Lead Application to Cure Sap Wells by Deploying Straddle Packer, Success Story

2021 ◽  
Author(s):  
Abdelrahman Mohamed Gadelhak ◽  
Mohamed Al-Badi ◽  
Ahmed Al-Bairaq ◽  
Eissa Al Mheiri ◽  
Abdullah Haj Al-Hosani ◽  
...  

Abstract Objective/Scope The Increase of inactive wells due to subsurface integrity issue is observed in brown fields, Fig-1 is, showing the record for onshore UAE asset, the economic challenges is calling for alternative solutions to restore well integrity with lower cost. Straddle packer application is consists of two tandom packers with spacer pipe in between with anchoring system deployed riglessly in the well to isolate the communication point between Ann A and Tubing.Fig-2, Methods, Procedures, Process Communication between tubing and annulus A (Failure of primary barrier) is identified as the right candidate wells for straddle packer application, First step is to clearly identify the point of communication, it has been done by annulus pressure investigation excersize during flowing and shut in condition, observing the return of annulus fluid which was the same produced gas Noise log has been conducted and clearly identified the communication point at SPM (Side Pocket Mandrel) to be used for emergency killing, Tubing integrity test was conducted using nippless plugs and inflow test below and above the leak point and confirm no other leak points within the tubing Engineering drawing for the leaking assembly was reviewed to design the dimension of straddle packer assembly, length and packer size It is recommended to deploy the assembly using electric line correlation for accurate depth selection After setting annulus pressure observed no build up Well opened safely to production Results/Observation/Conclusion Leak point arrested, well primary barrier restored Removed from DWS (drilling and workover schedule) and restore well production in addition to improving inactive string KPI for Gas asset Save almost work over cost for gas well XX-197 Novel/ Additive information The way forward is to check the scalability of extending this application among other ADNOC assets and to screen the right candidate wells for this application To add this application as a part of well integrity procedures and recommendations for such like cases

2020 ◽  
Vol 39 (6) ◽  
pp. 8823-8830
Author(s):  
Jiafeng Li ◽  
Hui Hu ◽  
Xiang Li ◽  
Qian Jin ◽  
Tianhao Huang

Under the influence of COVID-19, the economic benefits of shale gas development are greatly affected. With the large-scale development and utilization of shale gas in China, it is increasingly important to assess the economic impact of shale gas development. Therefore, this paper proposes a method for predicting the production of shale gas reservoirs, and uses back propagation (BP) neural network to nonlinearly fit reservoir reconstruction data to obtain shale gas well production forecasting models. Experiments show that compared with the traditional BP neural network, the proposed method can effectively improve the accuracy and stability of the prediction. There is a nonlinear correlation between reservoir reconstruction data and gas well production, which does not apply to traditional linear prediction methods


2013 ◽  
Vol 423-426 ◽  
pp. 2035-2039
Author(s):  
Long Cang Huang ◽  
Yin Ping Cao ◽  
Yang Yu ◽  
Yi Hua Dou

In the process of oil and gas well production, tubing connection stand the axial alternating load during open well, shut well and fluid flow. In order to know premium connection seal ability under the loading, two types of P110 88.9mmx6.45mm premium tubing connections which called A connection and B connection are performed with finite element analysis, in which contact pressures and their the regularities distribution on sealing surface are analyzed. The results show that with the increasing of cycle number, the maximum contact pressures on sealing surface of both A connection and B connection are decreased. The decreasing of the maximum contact pressures on B connection is greater than those on A connection. With the increasing of cycle number of axial alternating compression load, the maximum contact pressure on sealing surface of A connection is decreased, and the maximum contact pressure on sealing surface of B connection remains constant. Compared the result, it shows that the seal ability of A connection is better than B connection under axial alternating tension load, while the seal ability of B connection is better than type A connection under axial alternating compression load.


2021 ◽  
Author(s):  
Bassey Akong ◽  
Samuel Orimoloye ◽  
Friday Otutu ◽  
Akinwale Ojo ◽  
Goodluck Mfonnom ◽  
...  

Abstract The analysis of wellbore stability in gas wells is vital for effective drilling operations, especially in Brown fields and for modern drilling technologies. Tensile failure mode of Wellbore stability problems usually occur when drilling through hydrocarbon formations such as shale, unconsolidated sandstone, sand units, natural fractured formations and HPHT formations with narrow safety mud window. These problems can significantly affect drilling time, costs and the whole drilling operations. In the case of the candidate onshore gas well Niger Delta, there was severe lost circulation events and gas cut mud while drilling. However, there was need for a consistent adjustment of the tight drilling margin, flow, and mud rheology to allow for effective filter-cake formation around the penetrated natural fractures and traversed depleted intervals without jeopardizing the well integrity. Several assumptions were validly made for formations with voids or natural fractures, because the presence of these geological features influenced rock anisotropic properties, wellbore stress concentration and failure behavior with end point of partial – to-total loss circulation events. This was a complicated phenomenon, because the pre-drilled stress distribution simulation around the candidate wellbore was investigated to be affected by factors such as rock properties, far-field principal stresses, wellbore trajectory, formation pore pressure, reservoir and drilling fluids properties and time without much interest on traversing through voids or naturally fractured layers. This study reviews the major causes of the severe losses encountered, the adopted fractured permeability mid-line mudweight window mitigation process, stress caging strategies and other operational decisions adopted to further salvage and drill through the naturally fractured and depleted intervals, hence regaining the well integrity by reducing NPT and promoting well-early-time-production for the onshore gas well Niger Delta.


2021 ◽  
Author(s):  
Fianti Ramadhani ◽  
Syaiful Nurdin ◽  
Michael Olu Etuhoko ◽  
Yang Zhi ◽  
Sugeng Mulyono ◽  
...  

Abstract Four high-pressure-high temperature (HPHT) and sour gas wells are currently operating at Madura offshore as the only productive assets for Husky-CNOOC Madura Limited (HCML). Each well performance is very crucial to fulfill the demand of the gas customers in East Java, Indonesia. Since starting production in 2017, the wells experienced two main well integrity challenges, high annulus pressure and wellhead growth. Both challenges are very dependent to the well flow rate and the flow duration. A continuous operation monitoring is highly required in order to keep the wells operating safely. To overcome the challenges, HCML established a Well Integrity Management System (WIMS) document that approached several international standards as its basis. As company grows, development plan challenged the WIMS to perform faster and more efficient as compared to the existing manual system. From there, the journey of WIMS digitalization began. The journey started with the alignment of the existing WIMS document to the ISO-16530-1 at Operational Phase with more stringent boundary to operate the wells safely. The alignment covers, but not limited to the organizational structure, well barriers and criteria, monitoring and surveillance, annulus pressure management, and maintenance. The document also covered risk assessment and management of well integrity failure, which was the backbone of the WIMS digitalization. The current digital solutions allow production data to be accessed and retrieved directly from the system for analysis purposes. It compares the recorded data with pre-determined rules and parameters set in the system. It triggers a notification to the responsible personnel to perform the required action should any anomaly occurs. It also can send a reminder to users to schedule and complete a well Integrity test to ensure that a well is always in compliance with the WIMS. All test reports and documentation are stored in the system as preparation for any future audit. A key requirement of the expert software system was access to future developments that can offer enhanced functionality of the well integrity platform through additional near time capabilities such as predictive erosion and corrosion for downhole flow wetted components. This is being developed to enhance workover scheduling for existing wells and material selection for new wells and is planned to update automatically critical well integrity criteria such as tubing burst, collapse and MAASP.


2014 ◽  
Vol 962-965 ◽  
pp. 570-573
Author(s):  
Jian Yan ◽  
Xiao Bing Liang ◽  
Qian Wu ◽  
Qing Guo

Because of the gas slippage, the testing methods of stress sensitivity for gas reservoir should be different from that for oil reservoir. This text adopts the method that imposing back pressure on the outlet of testing core to weaken the gas slippage effect and tests the stress sensitivity of low permeability gas reservoirs, then analyzes the influence of permeability and water saturation on stress sensitivity. The results show that: low permeable and water-bearing gas reservoirs have strong stress sensitivity; the testing permeability has the power function relationship with net stress, compared to the exponential function, the fitting correlation coefficient is larger and more suited to the actual; the lower the permeability is and the higher water saturation is, the stronger the stress sensitivity is. The production of gas well is affected when considering the stress sensitivity, so the pressure dropping rate should be reasonable when low permeable gas reservoirs are developed. The results provide theoretical references for analyzing the well production and numerical simulation.


2019 ◽  
Author(s):  
Shaibu Mohammed ◽  
Prosper Anumah ◽  
Justice Sarkodie-Kyeremeh ◽  
Anthony Morgan ◽  
Emmanuel Acheaw

Sign in / Sign up

Export Citation Format

Share Document