Petroleum Development Oman Forecasting Management System

2021 ◽  
Author(s):  
Hilal Mudhafar Al Riyami ◽  
Hilal Mohammed Al Sheibani ◽  
Hamed Ali Al Subhi ◽  
Hussain Taqi Al Ajmi ◽  
Zeinab Youssef Zohny ◽  
...  

Abstract Production performance forecasting is considered as one of the most challenging and time consuming tasks in petroleum engineering disciplines, it has important implications on decision-making, planning production and processing of facilities. In Petroleum Development Oman (PDO), which is the major petroleum company in Oman, production forecast provides a technical input basis for the economic decisions throughout the exploration and production lifecycle. Reservoir engineers spend more than 250 days per year to complete this process. PDO Forecast Management System (FMS) was introduced to transform the conventional forecasting of gas production. Employing the latest state-of-the-art technologies in the field of data management and machine learning (ML), PDO FMS aims at optimizing and automating the process of capturing, reporting, and predicting hydrocarbon production. This new system covers the full forecast processes including long and short-term forecasting for gas, condensate, and water production. As a pilot project, PDO FMS was deployed on a cluster of 272 wells and relied on agile project management approach to realize the benefits during the development phase. Deployment of the new system resulted in a significant reduction of the forecasting time, optimization of manpower and forecasting accuracy.

2021 ◽  
Author(s):  
Fazeel Ahmad ◽  
Zohaib Channa ◽  
Fahad Al Hosni ◽  
Salman Farhan Nofal ◽  
Ziad Talat Libdi ◽  
...  

Abstract The paper discusses the pilot project in ADNOC Offshore to assess the Autonomous Inflow Control Device (AICD) technology as an effective solution for increasing oil production over the life of the field. High rate of water and gas production in horizontal wells is one of the key problems from the commencement of operation due to the high cost of produced water and gas treatment including several other factors. Early Gas breakthrough in wells can result in shut-in to conserve reservoir energy and to meet the set GOR guidelines. The pilot well was shut-in due to high GOR resulted from the gas breakthrough. A pilot project was implemented to evaluate the ability of autonomous inflow control technology to manage gas break through early in the life of the well spanned across horizontal wellbore. And also to balance the production influx profile across the entire lateral length and to compensate for the permeability variation and therefore the productivity of each zone. Each compartment in the pilot well was equipped with AICD Screens and Swell-able Packers across horizontal open hole wellbore to evaluate oil production and defer gas breakthrough. Some AICDs were equipped with treatment valve for the compartments that needed acid simulation to enhance the effectiveness of the zone. The selection factors for installing number of production valves in the pilot well per each AICD was based on reservoir and field data. Pre-modeling of the horizontal wellbore section with AICD was performed using commercial simulation software (NETool). After the first pilot was completed, a detailed technical analysis was conducted and based on the early production results from the pilot well showed that AICD completions effectively managed gas production by delaying the gas break through and restricting gas inflow from the reservoir with significant GOR reduction ±40% compared to baseline production performance data from the open hole without AICD thus increasing oil production. The pilot well performed positively to the AICD completion allowing to produce healthy oil and meeting the guidelines. The early production results are in line with NETool simulation modelling, thereby increasing assurance in the methods employed in designing the AICD completion for the well and candidate selection. This paper discusses the successful AICD completion installation and production operation in pilot well in ADNOC Offshore to manage GOR and produced the well with healthy oil under the set guidelines. This will enable to re-activate wells shut-in due to GOR constraint to help meeting the sustainable field production target.


Author(s):  
A. Abdul Rahman ◽  
H. Karim ◽  
I. A. Musliman ◽  
B. Siew ◽  
H. Rashidan ◽  
...  

<p><strong>Abstract.</strong> This paper describes the development of geospatial-based disaster management system for an agency at regional level. Important aspects of the system such as spatial data, geospatial database, interface and specific modules for the disaster management system form major discussions of this paper. The <i>Pengerang Disaster Management System</i> (PDMS) is being developed for a local authority in one of the Malaysian states who’s been given a task to monitor the surrounding environmental aspects. The local authority manages one of the largest oil and gas refinery plant in South East Asia region in collaboration with national oil company, PETRONAS. The PDMS, is a one-stop centre (dashboard) for managing the operations with other agencies or stakeholders such as police, marine, army, medical team, fire and rescue units. We anticipate many aspects of disaster management could trigger from this pilot project and thus provide some interesting ideas for a local authority in managing man-made disaster such as fire, other oil and gas related incidents. Some features of the developed system such as online map publishing services, data flow and other geospatial analysis during the event will be discussed in this paper. Near-future work and a big picture of the disaster management approach (with an emphasis to oil and gas incident and scenario) also will be highlighted.</p>


Author(s):  
A. Chaterine

This study accommodates subsurface uncertainties analysis and quantifies the effects on surface production volume to propose the optimal future field development. The problem of well productivity is sometimes only viewed from the surface components themselves, where in fact the subsurface component often has a significant effect on these production figures. In order to track the relationship between surface and subsurface, a model that integrates both must be created. The methods covered integrated asset modeling, probability forecasting, uncertainty quantification, sensitivity analysis, and optimization forecast. Subsurface uncertainties examined were : reservoir closure, regional segmentation, fluid contact, and SCAL properties. As the Integrated Asset Modeling is successfully conducted and a matched model is obtained for the gas-producing carbonate reservoir, highlights of the method are the following: 1) Up to ± 75% uncertainty range of reservoir parameters yields various production forecasting scenario using BHP control with the best case obtained is 335 BSCF of gas production and 254.4 MSTB of oil production, 2) SCAL properties and pseudo-faults are the most sensitive subsurface uncertainty that gives major impact to the production scheme, 3) EOS modeling and rock compressibility modeling must be evaluated seriously as those contribute significantly to condensate production and the field’s revenue, and 4) a proposed optimum production scenario for future development of the field with 151.6 BSCF gas and 414.4 MSTB oil that yields a total NPV of 218.7 MMUSD. The approach and methods implemented has been proven to result in more accurate production forecast and reduce the project cost as the effect of uncertainty reduction.


2021 ◽  
Author(s):  
Mohamed El Sgher ◽  
Kashy Aminian ◽  
Ameri Samuel

Abstract The objective of this study was to investigate the impact of the hydraulic fracturing treatment design, including cluster spacing and fracturing fluid volume on the hydraulic fracture properties and consequently, the productivity of a horizontal Marcellus Shale well with multi-stage fractures. The availability of a significant amount of advanced technical information from the Marcellus Shale Energy and Environment Laboratory (MSEEL) provided an opportunity to perform an integrated analysis to gain valuable insight into optimizing fracturing treatment and the gas recovery from Marcellus shale. The available technical information from a horizontal well at MSEEL includes well logs, image logs (both vertical and lateral), diagnostic fracture injection test (DFIT), fracturing treatment data, microseismic recording during the fracturing treatment, production logging data, and production data. The analysis of core data, image logs, and DFIT provided the necessary data for accurate prediction of the hydraulic fracture properties and confirmed the presence and distribution of natural fractures (fissures) in the formation. Furthermore, the results of the microseismic interpretation were utilized to adjust the stress conditions in the adjacent layers. The predicted hydraulic fracture properties were then imported into a reservoir simulation model, developed based on the Marcellus Shale properties, to predict the production performance of the well. Marcellus Shale properties, including porosity, permeability, adsorption characteristics, were obtained from the measurements on the core plugs and the well log data. The Quanta Geo borehole image log from the lateral section of the well was utilized to estimate the fissure distribution s in the shale. The measured and published data were utilized to develop the geomechnical factors to account for the hydraulic fracture conductivity and the formation (matrix and fissure) permeability impairments caused by the reservoir pressure depletion during the production. Stress shadowing and the geomechanical factors were found to play major roles in production performance. Their inclusion in the reservoir model provided a close agreement with the actual production performance of the well. The impact of stress shadowing is significant for Marcellus shale because of the low in-situ stress contrast between the pay zone and the adjacent zones. Stress shadowing appears to have a significant impact on hydraulic fracture properties and as result on the production during the early stages. The geomechanical factors, caused by the net stress changes have a more significant impact on the production during later stages. The cumulative gas production was found to increase as the cluster spacing was decreased (larger number of clusters). At the same time, the stress shadowing caused by the closer cluster spacing resulted in a lower fracture conductivity which in turn diminished the increase in gas production. However, the total fracture volume has more of an impact than the fracture conductivity on gas recovery. The analysis provided valuable insight for optimizing the cluster spacing and the gas recovery from Marcellus shale.


SPE Journal ◽  
2021 ◽  
pp. 1-18
Author(s):  
Yingli Xia ◽  
Tianfu Xu ◽  
Yilong Yuan ◽  
Xin Xin ◽  
Huixing Zhu

Summary Natural gas hydrate (NGH) is regarded as an important alternative future energy resource. In recent years, a few short-term production tests have been successfully conducted with both permafrost and marine sediments. However, long-term hydrate production performance and the potential geomechanical problems are not very clear. According to the available geological data at the Mallik site, a more realistic hydrate reservoir model that considers the heterogeneity of porosity, permeability, and hydrate saturation was developed and validated by reproducing the field depressurization test. The coupled multiphase and heat flow and geomechanical response induced by depressurization were fully investigated for long-term gas production from the validated hydrate reservoir model. The results indicate that long-term gas production through depressurization from a vertically heterogeneous hydrate reservoir is technically feasible, but the production efficiency is generally modest, with the low average gas production rate of 4.93 × 103 ST m3/d (ST represents the standard conditions) over a 1-year period. The hydrate dissociation region is significantly affected by the reservoir heterogeneity and reveals a heterogeneous dissociation front in the reservoir. The depressurization production results in significant increase of shear stress and vertical compaction in the hydrate reservoir. The response of shear stress indicates that the potential region of sand migration is mainly in the sand-dominant layer during gas production from the hydraulically heterogeneous hydrate reservoir (e.g., sand layers interbedded with clay layers). The maximum subsidence is approximately 78 mm and occurred at the 72nd day, whereas the final subsidence is slowly dropped to 63 mm after 1-year of depressurization production. The vertical subsidence is greatly dependent on the elastic properties and the permeability anisotropy. In particular, the maximum subsidence increased by approximately 81% when the ratio of permeability anisotropy was set at 5:1. Furthermore, the potential shear failure in the hydrate reservoir is strongly correlated to the in-situ stress state. For the normal fault stress regime, the greater the initial horizontal stress is, the less likely the hydrate reservoir is to undergo shear failure during depressurization production.


2021 ◽  
Author(s):  
Pawan Agrawal ◽  
Sharifa Yousif ◽  
Ahmed Shokry ◽  
Talha Saqib ◽  
Osama Keshtta ◽  
...  

Abstract In a giant offshore UAE carbonate oil field, challenges related to advanced maturity, presence of a huge gas-cap and reservoir heterogeneities have impacted production performance. More than 30% of oil producers are closed due to gas front advance and this percentage is increasing with time. The viability of future developments is highly impacted by lower completion design and ways to limit gas breakthrough. Autonomous inflow-control devices (AICD's) are seen as a viable lower completion method to mitigate gas production while allowing oil production, but their effect on pressure drawdown must be carefully accounted for, in a context of particularly high export pressure. A first AICD completion was tested in 2020, after a careful selection amongst high-GOR wells and a diagnosis of underlying gas production mechanisms. The selected pilot is an open-hole horizontal drain closed due to high GOR. Its production profile was investigated through a baseline production log. Several AICD designs were simulated using a nodal analysis model to account for the export pressure. Reservoir simulation was used to evaluate the long-term performance of short-listed scenarios. The integrated process involved all disciplines, from geology, reservoir engineering, petrophysics, to petroleum and completion engineering. In the finally selected design, only the high-permeability heel part of the horizontal drain was covered by AICDs, whereas the rest was completed with pre-perforated liner intervals, separated with swell packers. It was considered that a balance between gas isolation and pressure draw-down reduction had to be found to ensure production viability for such pilot evaluation. Subsequent to the re-completion, the well could be produced at low GOR, and a second production log confirmed the effectiveness of AICDs in isolating free gas production, while enhancing healthy oil production from the deeper part of the drain. Continuous production monitoring, and other flow profile surveys, will complete the evaluation of AICD effectiveness and its adaptability to evolving pressure and fluid distribution within the reservoir. Several lessons will be learnt from this first AICD pilot, particularly related to the criticality of fully integrated subsurface understanding, evaluation, and completion design studies. The use of AICD technology appears promising for retrofit solutions in high-GOR inactive strings, prolonging well life and increasing reserves. Regarding newly drilled wells, dedicated efforts are underway to associate this technology with enhanced reservoir evaluation methods, allowing to directly design the lower completion based on diagnosed reservoir heterogeneities. Reduced export pressure and artificial lift will feature in future field development phases, and offer the flexibility to extend the use of AICD's. The current technology evaluation phases are however crucial in the definition of such technology deployments and the confirmation of their long-term viability.


2020 ◽  
pp. 17-20
Author(s):  
Mariana BORTNIKOVA ◽  
Nataliia PETRYSHYN ◽  
Yuliia CHYRKOVA

Introduction. The implementation of progressive methods of human resource management is one of the most important vectors of enterprise development. The success of a business directly depends on how professional and responsible employees represent the company, how motivated they are and strive to apply management strategies in life, achieve the set goals and ensure results. The purpose of the paper is to form a toolset for human resource consulting as a factor of increasing the efficiency of personnel management in enterprises. Results. HR consulting is aimed at diagnosing the correspondence of professional and personal competencies of management personnel, improving the organizational structure and corporate culture of the enterprise, solving current problems related to improving production performance, and enhancing employee motivation. HR consulting is aimed at implementing policies in the field of personnel management based on the application of such fields as: HR audit, HR planning, HR strategy development, corporate culture formation, HR potential assessment, establishment of a motivation system, HR administration, improvement of the HR management system efficiency. Attracting external consultants to the personnel management system involves the formation and systematization of key tools for the implementation of personnel consulting, namely: coaching, recruiting, outsourcing, training, headhunting. The technology for the personnel consulting implementation at enterprises involves the realization of the following stages: pre-design, design, implementation and support. At each of the stages presented, the clarification and expansion of the functionality of the personnel consulting implementation takes place. Conclusion. People are an important element of business and the main source of its development. The correct personnel selection enriches the team with talented specialists of the required personal qualities, professional knowledge and skills. To improve staffing, the enterprise should search for employees both in the internal and external labor markets, combine various methods of personnel selection, and apply technologies of borrowed labor.


2021 ◽  
Vol 10 ◽  
pp. 17-32
Author(s):  
Guido Fava ◽  
Việt Anh Đinh

The most advanced technique to evaluate different solutions proposed for a field development plan consists of building a numerical model to simulate the production performance of each alternative. Fields covering hundreds of square kilometres frequently require a large number of wells. There are studies and software concerning optimal planning of vertical wells for the development of a field. However, only few studies cover planning of a large number of horizontal wells seeking full population on a regular pattern. One of the criteria for horizontal well planning is selecting the well positions that have the best reservoir properties and certain standoffs from oil/water contact. The wells are then ranked according to their performances. Other criteria include the geometry and spacing of the wells. Placing hundreds of well individually according to these criteria is highly time consuming and can become impossible under time restraints. A method for planning a large number of horizontal wells in a regular pattern in a simulation model significantly reduces the time required for a reservoir production forecast using simulation software. The proposed method is implemented by a computer script and takes into account not only the aforementioned criteria, but also new well requirements concerning existing wells, development area boundaries, and reservoir geological structure features. Some of the conclusions drawn from a study on this method are (1) the new method saves a significant amount of working hours and avoids human errors, especially when many development scenarios need to be considered; (2) a large reservoir with hundreds of wells may have infinite possible solutions, and this approach has the aim of giving the most significant one; and (3) a horizontal well planning module would be a useful tool for commercial simulation software to ease engineers' tasks.


Sign in / Sign up

Export Citation Format

Share Document