Highly Efficient and Accurate Gas-Alkane Binary Mixture Interfacial Tension Equations for a Broad Range of Temperatures, Pressures, and Compositions

SPE Journal ◽  
2021 ◽  
pp. 1-19
Author(s):  
Yingnan Wang ◽  
Nadia Shardt ◽  
Janet A. W. Elliott ◽  
Zhehui Jin

Summary Gas-alkane interfacial tension (IFT) is an important parameter in the enhanced oil recovery (EOR) process. Thus, it is imperative to obtain an accurate gas-alkane mixture IFT for both chemical and petroleum engineering applications. Various empirical correlations have been developed in the past several decades. Although these models are often easy to implement, their accuracy is inconsistent over a wide range of temperatures, pressures, and compositions. Although statistical mechanics-based models and molecular simulations can accurately predict gas-alkane IFT, they usually come with an extensive computational cost. The Shardt-Elliott (SE) model is a highly accurate IFT model that for subcritical fluids is analytic in terms of temperature T and composition x. In applications, it is desirable to obtain IFT in terms of temperature T and pressure P, which requires time-consuming flash calculations, and for mixtures that contain a gas component greater than its pure species critical point, additional critical composition calculations are required. In this work, the SE model is combined with a machine learning (ML) approach to obtain highly efficient and highly accurate gas-alkane binary mixture IFT equations directly in terms of temperature, pressure, and alkane molar weights. The SE model is used to build an IFT database (more than 36,000 points) for ML training to obtain IFT equations. The ML-based IFT equations are evaluated in comparison with the available experimental data (888 points) and with the SE model, as well as with the less accurate parachor model. Overall, the ML-based IFT equations show excellent agreement with experimental data for gas-alkane binary mixtures over a wide range of T and P, and they outperform the widely used parachor model. The developed highly efficient and highly accurate IFT functions can serve as a basis for modeling gas-alkane binary mixtures for a broad range of T, P, and x.

2018 ◽  
Vol 55 (3) ◽  
pp. 252-257 ◽  
Author(s):  
Derong Xu ◽  
Wanli Kang ◽  
Liming Zhang ◽  
Jiatong Jiang ◽  
Zhe Li ◽  
...  

Beverages ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 23
Author(s):  
Margaret Thibodeau ◽  
Gary Pickering

Ethanol is a complex stimulus that elicits multiple gustatory and chemesthetic sensations. Alcoholic beverages also contain other tastants that impact flavour. Here, we sought to characterize the binary interactions between ethanol and four stimuli representing the dominant orosensations elicited in alcoholic beverages: fructose (sweet), quinine (bitter), tartaric acid (sour) and aluminium sulphate (astringent). Female participants were screened for thermal taste status to determine whether the heightened orosensory responsiveness of thermal tasters (n = 21–22) compared to thermal non-tasters (n = 13–15) extends to these binary mixtures. Participants rated the intensity of five orosensations in binary solutions of ethanol (5%, 13%, 23%) and a tastant (low, medium, high). For each tastant, 3-way ANOVAs determined which factors impacted orosensory ratings. Burning/tingling increased as ethanol concentration increased in all four binary mixture types and was not impacted by the concentration of other stimuli. In contrast, bitterness increased with ethanol concentration, and decreased with increasing fructose concentration. Sourness tended to be reduced as ethanol concentration increased, although astringency intensity decreased with increasing concentration of fructose. Overall, thermal tasters tended to be more responsive than thermal non-tasters. These results provide insights into how the taste and chemesthetic profiles of alcoholic beverages across a wide range of ethanol concentrations can be manipulated by changing their composition.


Author(s):  
S. Wu ◽  
P. Angelikopoulos ◽  
C. Papadimitriou ◽  
R. Moser ◽  
P. Koumoutsakos

We present a hierarchical Bayesian framework for the selection of force fields in molecular dynamics (MD) simulations. The framework associates the variability of the optimal parameters of the MD potentials under different environmental conditions with the corresponding variability in experimental data. The high computational cost associated with the hierarchical Bayesian framework is reduced by orders of magnitude through a parallelized Transitional Markov Chain Monte Carlo method combined with the Laplace Asymptotic Approximation. The suitability of the hierarchical approach is demonstrated by performing MD simulations with prescribed parameters to obtain data for transport coefficients under different conditions, which are then used to infer and evaluate the parameters of the MD model. We demonstrate the selection of MD models based on experimental data and verify that the hierarchical model can accurately quantify the uncertainty across experiments; improve the posterior probability density function estimation of the parameters, thus, improve predictions on future experiments; identify the most plausible force field to describe the underlying structure of a given dataset. The framework and associated software are applicable to a wide range of nanoscale simulations associated with experimental data with a hierarchical structure.


2013 ◽  
Vol 11 (1) ◽  
pp. 57-62 ◽  
Author(s):  
Mariana Hristova

AbstractThe flash points of three binary mixtures, containing n-heptane, o-xylene, m-xylene and ethylbenzene, were measured by Pensky-Martens closed cup tester. The experimental data were compared with the calculated values using Liaw’s Model with the application of Raoult’s Law and Wilson equation. These equations were in good qualitative agreement.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Ru-Sen Feng ◽  
Yong-Jun Guo ◽  
Xin-Min Zhang ◽  
Jun Hu ◽  
Hua-Bing Li

Hydrophobically modified associating polyacrylamide (HAPAM) has good compatibility with the Daqing heavy alkylbenzene sulfonate surfactant. The HAPAM alkali/surfactant/polymer (ASP) system can generate ultralow interfacial tension in a wide range of alkali/surfactant concentrations and maintain stable viscosity and interfacial tension for 120 days. The HAPAM ASP system has good injectivity for the Daqing class II reservoirs (100–300 × 10−3 μm2) and can improve oil recovery by more than 25% on top of water flooding. In the presence of both the alkali and the surfactant, the surfactant interacts with the associating groups of the polymer to form more micelles, which can significantly enhance the viscosity of the ASP system. Compared with using HPAM (Mw = 2.5 MDa), using HAPAM can reduce the polymer use by more than 40%.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6879
Author(s):  
Andrii Rusanov ◽  
Roman Rusanov ◽  
Piotr Klonowicz ◽  
Piotr Lampart ◽  
Grzegorz Żywica ◽  
...  

The article describes an interpolation–analytical method of reconstruction of the IAPWS-95 equations of state and the modified Benedict–Webb–Rubin equations of state with 32 terms (mBWR32). The method enables us to provide the thermodynamic closure in 3D computational fluid dynamics (CFD) calculations of turbomachinery flows with real working media, such as steam and Organic Rankine Cycle (ORC) fluids. The described approach allows for the sufficient accuracy of 3D flow calculations and does not require a significant increase in computational cost over perfect gas calculations. The method is validated against experimental data from measurements and compared with computational results from the model using the Tammann equation of state. Three turbine blading systems are considered—a multi-stage configuration from a low-pressure cylinder of a large-power steam turbine and two ORC microturbines working with organic media HFE7100 and R227ea. The calculation results obtained using the described method of approximation of the IAPWS-95 and mBWR32 equations exhibit satisfactory agreement with the experimental data, considering pressures, temperatures and enthalpies in key sections, as well as turbine power and efficiency in a wide range of changing thermodynamic parameters. In contrast, the Tammann equation of state provides acceptable results only for relatively small changes of thermodynamic parameters.


2021 ◽  
Vol 33 (2) ◽  
pp. 291-298
Author(s):  
ANSHU ◽  
MANJU RANI ◽  
SANJEEV MAKEN

Thermophysical properties of binary liquid mixtures are highly beneficial for getting information about the intermolecular interactions and geometrical effects in the system. The chloro-substituted benzene compounds like 2-chlorotoluene, 4-chlorotoluene, 1,3-dichlorobenzene also have wide range of industrial and biomedical areas. In present work, the refractive indices (n) of haloarenes, hydrocarbons, ether, and respective possible binary mixtures were experimentally determined over the entire compositions at T= (298.15-318.15) K. The mixtures selected were 2-chlorotoluene or 4-chlorotoluene or 1,3-dichlorobenzene (1) + n-hexane or cyclohexane or 1,4-dioxane (2) with its possible combinations. The Δn is positive for all binary mixtures at all investigated compositions. Different rules of mixing like Lorentz-Lorentz, Erying-John, Arago-Biot, etc. were also used to predict n values. The Δn values were also analyzed in terms of ongoing intermolecular interactions among the components of the selected system.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8080
Author(s):  
Iván Castro-Fernández ◽  
Ricardo Borobia-Moreno ◽  
Rauno Cavallaro ◽  
Gonzalo Sánchez-Arriaga

The validity of using a low-computational-cost model for the aerodynamic characterization of Airborne Wind Energy Systems was studied by benchmarking a three-dimensional Unsteady Panel Method (UnPaM) with experimental data from a flight test campaign of a two-line Rigid-Framed Delta kite. The latter, and a subsequent analysis of the experimental data, provided the evolution of the tether tensions, the full kinematic state of the kite (aerodynamic velocity and angular velocity vectors, among others), and its aerodynamic coefficients. The history of the kinematic state was used as input for UnPaM that provided a set of theoretical aerodynamic coefficients. Disparate conclusions were found when comparing the experimental and theoretical aerodynamic coefficients. For a wide range of angles of attack and sideslip angles, the agreement in the lift and lateral force coefficients was good and moderate, respectively, considering UnPaM is a potential flow tool. As expected, UnPaM predicts a much lower drag because it ignores viscous effects. The comparison of the aerodynamic torque coefficients is more delicate due to uncertainties on the experimental data. Besides fully non-stationary simulations, the lift coefficient was also studied with UnPaM by assuming quasi-steady and steady conditions. It was found that for a typical figure-of-eight trajectory there are no significant differences between unsteady and quasi-steady approaches allowing for fast simulations.


2013 ◽  
Vol 639-640 ◽  
pp. 118-129 ◽  
Author(s):  
Giuseppe Carlo Marano ◽  
Rita Greco ◽  
Giuseppe Quaranta ◽  
Alessandra Fiore ◽  
Jennifer Avakian ◽  
...  

Passive devices for vibration control are widely adopted in earthquake engineering for mitigation of seismic effects obtaining an efficient, robust and not expensive structural protection. They are largely used in the seismic protection of industrial machines, technical equipment, buildings, bridges and others more as reliable and affordable solutions. Moreover their performances are extremely sensitive to their dynamic mechanical behavior; a reliable identification of their mechanical behavior is therefore of key importance, despite the current lack of accurate and simple standard procedures to identify parameters and models for those devices. In this work, a new procedure for the dynamic identification of passive devices is described, through standard laboratory dynamic tests and the use of evolutionary algorithms. This procedure allows to find proper mechanical law and parameters to use for an accurate structural analysis and earthquake-resistant structure design. The procedure uses standard pre-qualification and quality-control tests, and consists in the minimization of the integral measure of the difference between mathematic and experimental applied force to the device under an imposed displacement time history. Due to the amount of corruption source of the experimental data and to the deep non linear nature of the problem, the use of evolutive algorithms is the main way to solve hard numerical task in an efficient way. The proposed procedure is applicable to a wide range of mathematical expressions because of its inherent stability and low computational cost, and allows comparing different mechanical laws by ranking their agreement with experimental data. Results are obtained for different experimentally tested devices, that are viscous dampers and seismic isolators, and are reported in order to demonstrate the efficiency of the proposed strategy.


Geophysics ◽  
2018 ◽  
Vol 83 (4) ◽  
pp. F29-F40 ◽  
Author(s):  
Bo Han ◽  
Yuguo Li ◽  
Gang Li

We have developed a finite volume (FV) algorithm for magnetotelluric (MT) forward modeling in 3D conductivity structures with general anisotropy. The electric and magnetic fields are discretized on a conventional staggered grid, which cannot directly address the full-tensor conductivity. To overcome this difficulty, an interpolation scheme is used to average different components of the electric field to the same position. We formulate the algorithm in pure matrix form and implement it in a new language, Julia, making the programming process highly efficient and leading to a code with excellent readability, maintainability, and extendability. The validity of the FV Julia code is demonstrated using a layered 1D anisotropic model. For this model, the FV code provides accurate results, and the computational cost is reasonable. Being preconditioned with the electromagnetic potential ([Formula: see text]) system, the iterative solvers including quasi-minimal residual and biconjugate gradient stabilized exhibit a good convergence rate for a wide range of periods. The direct solvers MUMPS and PARDISO are highly efficient for small model sizes. For a relatively large model size with 2.18 millions unknowns, the linear system of one period can be solved by MUMPS within 360 s with multiple threads involved in the computation, and the memory usage is only 11.6 GB in the “out-of-core” mode. We further calculated MT responses of a 3D model with dipping and horizontal anisotropy, respectively. The results suggest that the electrical anisotropy can have significant influence on the MT response.


Sign in / Sign up

Export Citation Format

Share Document