The Application of Multi-phase Metering on Oil & Gas Gathering Platforms

1995 ◽  
Author(s):  
T.L. Smith
Keyword(s):  
Author(s):  
Mohamed Odan ◽  
Faraj Ben Rajeb ◽  
Mohammad Azizur Rahman ◽  
Amer Aborig ◽  
Syed Imtiaz ◽  
...  

Abstract This paper investigates issues around four-phase (Oil/CO2/water/sand) flows occurring within subsea pipelines. Multi-phase flows are the norm, as production fluid from reservoirs typically include sand with water. However, these multi-phase flow mixtures, whether three- or four-phase, are at risk of forming slug flows. The inclusion of sand in this mixture is concerning, as it not only leads to increased levels of pipeline erosion but it also has the potential, to accumulate sand at the bottom of the pipe, blocking the pipe or at the very least hindering the flow. This latter impact can prove problematic, as a minimum fluid velocity must be maintained to ensure the safe and regulated flow of particles along a pipeline. The presence of low amounts of sand particles in oil/gas/water flow mixtures can serve to reduce the pressure exerted on bends. The sand volume fraction must in this case, be relatively low such that the particles’ resistance causes only a moderate loss in pressure. Therefore, the study aims to gauge the impact of oil/gas/water/sand mixtures on various pipeline structures as well as to further investigate the phenomenon of flow-induced vibration to determine the optimal flow variables which can be applied predicting the structural responses of subsea pipelines.


2021 ◽  
pp. 39-42
Author(s):  
S.F. Musaev ◽  

The paper deals with the issues of the implementation of coalessors for the separation of multi-phase fluids into particular phases during oil preparation for transportation. Various coalessors of liquid/liquid type (for separation of oil emulsions) and liquid/gas (for gas separation) have been analyzed. The results of the coalessor implementation are presented, the maximum sizes of water drops washed with oil flow estimated, the necessity of the consideration of gas compressibility rate during the evaluation of the sedimentation of mechanical particles marked.


Author(s):  
Mohamed Odan

Abstract Offshore drilling projects can be as complex as they are costly, and many problems can arise during the drilling and extraction of sub-sea pipelines petroleum, including environmental issues. The oil and gas industry relies on multi-phase, multi-component flow techniques to transport substances such as gas, oil and water through horizontal and sub-sea pipelines. Artic and offshore drill sites can be particularly challenging due to hydrate formation in the transport horizontal and sub-sea pipelines. This study investigates the feasibility of using a four-phase, four-fluid flow Multi-Component through horizontal pipelines to move a four-phase multi-component flow (oil, gas, water, and sand particles) through submerged pipelines. In order to accurately gauge the multi-component mixtures’ hydro- and thermo-dynamic properties, fluid equilibrium and phase-behavior models are constructed. As well, to examine various interrelated factors such as momentum, mass and heat transfer occurring between pipelines walls and flow, a series of equations are developed. In the present study, the effect of temperature and pressure on multi-phase flows in horizontal and sub-sea pipelines is investigated. As well, models of flow patterns and pressure drops are created specifically for horizontal and sub-sea pipeline environments. Note that the terms “Four-Phase and Multi-Component flow” are used interchangeably in this study. And Create pressure drops and flow behavior models of multi-phase flows for horizontal and sub-sea pipelines. Furthermore, multi-phase flows may occur in any one of the following combinations: liquid-gas, liquid-gas-solid, liquid-liquid-gas-solid, An example of a, liquid-liquid-gas-solid flow is four immiscible fluids and component (e.g., water, oil, gas, and solid), immiscible liquids being those which do not form a homogeneous mixture when added together. In terms of practical applications of multi-phase and multi-component flows, water injected into an oil pipelines helps to decreases both the pressure gradient and flow resistance.


Author(s):  
Mohamed Odan ◽  
Faraj Ben Rajeb ◽  
Mohammad Azizur Rahman ◽  
Amer Aborig ◽  
Syed Imtiaz ◽  
...  

Abstract This paper investigates issues around four-phase (Oil/CO2/water/sand) flows occurring within pipelines. Multiphase flows are the norm, as production fluid from reservoirs typically include sand with water. However, these multi-phase flow mixtures, whether three- or four-phase, are at risk of forming slug flows. The inclusion of sand in this mixture is concerning, as it not only leads to increased levels of pipeline erosion but it also has the potential, to accumulate sand at the bottom of the pipe, blocking the pipe or at the very least hindering the flow. This latter impact can prove problematic, as a minimum fluid velocity must be maintained to ensure the safe and regulated flow of particles along a pipeline. The presence of low amounts of sand particles in oil/gas/water flow mixtures can serve to reduce the pressure exerted on bends. The sand volume fraction must in this case, be relatively low such that the particles’ resistance causes only a moderate loss in pressure. Therefore, the study aims to gauge the impact of oil/gas/water/sand mixtures on various pipeline structures as well as to further investigate the phenomenon of flow-induced vibration to determine the optimal flow variables which can be applied predicting the structural responses of pipelines.


Author(s):  
J. S. Lally ◽  
L. E. Thomas ◽  
R. M. Fisher

A variety of materials containing many different microstructures have been examined with the USS MVEM. Three topics have been selected to illustrate some of the more recent studies of diffraction phenomena and defect, grain and multi-phase structures of metals and minerals.(1) Critical Voltage Effects in Metals and Alloys - This many-beam dynamical diffraction phenomenon, in which some Bragg resonances vanish at certain accelerating voltages, Vc, depends sensitively on the spacing of diffracting planes, Debye temperature θD and structure factors. Vc values can be measured to ± 0.5% in the HVEM ana used to obtain improved extinction distances and θD values appropriate to electron diffraction, as well as to probe local bonding effects and composition variations in alloys.


Author(s):  
Xiao Zhang

Polymer microscopy involves multiple imaging techniques. Speed, simplicity, and productivity are key factors in running an industrial polymer microscopy lab. In polymer science, the morphology of a multi-phase blend is often the link between process and properties. The extent to which the researcher can quantify the morphology determines the strength of the link. To aid the polymer microscopist in these tasks, digital imaging systems are becoming more prevalent. Advances in computers, digital imaging hardware and software, and network technologies have made it possible to implement digital imaging systems in industrial microscopy labs.


2013 ◽  
pp. 109-128 ◽  
Author(s):  
C. Rühl

This paper presents the highlights of the third annual edition of the BP Energy Outlook, which sets out BP’s view of the most likely developments in global energy markets to 2030, based on up-to-date analysis and taking into account developments of the past year. The Outlook’s overall expectation for growth in global energy demand is to be 36% higher in 2030 than in 2011 and almost all the growth coming from emerging economies. It also reflects shifting expectations of the pattern of supply, with unconventional sources — shale gas and tight oil together with heavy oil and biofuels — playing an increasingly important role and, in particular, transforming the energy balance of the US. While the fuel mix is evolving, fossil fuels will continue to be dominant. Oil, gas and coal are expected to converge on market shares of around 26—28% each by 2030, and non-fossil fuels — nuclear, hydro and renewables — on a share of around 6—7% each. By 2030, increasing production and moderating demand will result in the US being 99% self-sufficient in net energy. Meanwhile, with continuing steep economic growth, major emerging economies such as China and India will become increasingly reliant on energy imports. These shifts will have major impacts on trade balances.


Sign in / Sign up

Export Citation Format

Share Document