Measuring and Modeling the Displacement of Connate Water in Chalk Core Plugs During Water Injection

2006 ◽  
Vol 9 (03) ◽  
pp. 259-265 ◽  
Author(s):  
Uffe Korsbech ◽  
Helle Aage ◽  
Kathrine Hedegaard ◽  
Bertel L. Andersen ◽  
Niels Springer

Summary The movement of connate water spiked with gamma-emitting 22 Na (a radioactive sodium isotope) was studied during laboratory waterflooding of oil-saturated chalk at connate-water saturation from a North Sea reservoir. Using a 1D gamma-monitoring technique, it was observed that connate water is piled up at the front of the injection water and forms a mixed water bank with almost 100% connate water in the front, behind which a gradual transition to pure injection water occurs. This result underpins log interpretations from waterflooded chalk reservoirs. An ad hoc model was set up by use of the results, and the process was examined theoretically at a larger scale. Introduction The behavior of the in-situ, or connate, water in an oil reservoir under waterflooding has been investigated only sparsely in the past. A study of the mobility of connate water in sandpacks during waterflooding showed that the connate water became mobile and formed a buffer zone between the injection water and the mobilized oil phase (Brown 1957). Water imbibition in a fractured chalk plug using D2O (labeled connate water) and nuclear magnetic resonance (NMR) imaging showed that the connate water was swept up in front of the imbibing water (Nielsen et al. 2000). If these observations are valid on a reservoir scale, it means that it is the connate water that actually displaces the oil during a waterflood. Laboratory corefloods have demonstrated that the remaining oil saturation after a waterflood depends on chalk type, chalk porosity, and initial oil saturation. Waterflooding of oil-saturated chalk cores develops an oil/water shock front that displaces the mobile oil in a nearly pistonlike manner with very little oil cut after water breakthrough, in agreement with theoretical expectations (Dake 1978). Sharp oil/water fronts have been observed from logging of waterflooded zones in North Sea chalk reservoirs (Ovens et al. 1998). The actual oil saturation and its potential variation within the waterflooded zone is, however, often difficult to assess from standard petrophysical logs of a waterflooded zone because of a change in resistivity and temperature after injection of cold seawater. An a priori model has been proposed by Ovens et al. (1998) from an inspection of resistivity profiles across waterflooded zones in the Danish North Sea. The observations indicate that the injection of cold seawater into an oil-bearing chalk reservoir will generate a bank of reservoir-temperature formation water between the cold injection water and the displaced oil. The logs (porosity, water saturation, and deep resistivity) show that the injected water does not mix thoroughly with the formation water when the oil/water front progresses through the reservoir. In an attempt to verify the a priori model, a dedicated laboratory waterflooding program was developed. Synthetic seawater with a chemical composition corresponding to diluted Dan field brine was injected into plugs saturated with oil and connate water of the same chemical composition as the synthetic seawater. The connate water, however, was spiked with 22Na (gamma ray emitter), whereby the movement of connate water could be followed in time and space. Basic parameters have been determined from the experiments, and an ad hoc model describing the interaction between injection water, oil, and connate water has been constructed. Finally, this model has been used to predict what will happen for a deep penetration of injection water into chalk saturated with oil and connate water.

Geophysics ◽  
2011 ◽  
Vol 76 (5) ◽  
pp. A31-A36 ◽  
Author(s):  
André Revil ◽  
Myriam Schmutz ◽  
Mike L. Batzle

The presence of oil in an unconsolidated granular porous material, like a sand, changes both the resistivity of the material and the value of the phase lag between the current and the voltage. We performed laboratory experiments to investigate the influence of oil wettability and water saturation upon the complex resistivity of oil-bearing sands in the frequency range 1 mHz–1 kHz. For a sand saturated by a nonwetting oil, both the resistivity and the magnitude of the phase increase with the oil saturation, as expected from theoretical considerations. In the case of a sand partially saturated by a wetting oil, we found that both the magnitude of the phase and the resistivity decrease with the oil saturation. The quadrature conductivity decreases with the oil with the same trend in presence of wetting and nonwetting oils for relative water saturation above 0.5. In the case of a nonwetting oil, the results are quantitatively predicted by available theories. In the case of a wet oil, our results could be interpreted as resulting from the increase of the cation exchange capacity associated with the presence of a polar component at the oil water interface.


2021 ◽  
Vol 25 (6 Part A) ◽  
pp. 4153-4160
Author(s):  
Junjie Dong ◽  
Rui Deng

The indoor comprehensive analysis of core saturation of airtight coring wells is an important part of well logging interpretation. According to the saturation data, the geological reserves can be accurately calculated, and the remaining oil saturation and water-flooded zone in the later stage of the production well can be accurately evaluated. Due to the influence of many factors in the coring process and the experiment process, the sum of the core oil and water saturation is usually not equal to 100%. At present, conventional airtight coring correction method is generally to analyze the oil-water saturation, and then correct the data of the same factors that affect the results. This article combines two methods for saturation correction of XX oilfield in China. For cores with consistent missing factors, mathematical statistics are used to correct the saturation. When most of the rock pores have irreducible water and remaining oil, the phase percolation split method is used for the correction after the experimental analysis. By comparing with the logging interpretation results and the results of adjacent wells, the feasibility of the comprehensive correction method can be verified.


Author(s):  
A. Syahputra

Surveillance is very important in managing a steamflood project. On the current surveillance plan, Temperature and steam ID logs are acquired on observation wells at least every year while CO log (oil saturation log or SO log) every 3 years. Based on those surveillance logs, a dynamic full field reservoir model is updated quarterly. Typically, a high depletion rate happens in a new steamflood area as a function of drainage activities and steamflood injection. Due to different acquisition time, there is a possibility of misalignment or information gaps between remaining oil maps (ie: net pay, average oil saturation or hydrocarbon pore thickness map) with steam chest map, for example a case of high remaining oil on high steam saturation interval. The methodology that is used to predict oil saturation log is neural network. In this neural network method, open hole observation wells logs (static reservoir log) such as vshale, porosity, water saturation effective, and pay non pay interval), dynamic reservoir logs as temperature, steam saturation, oil saturation, and acquisition time are used as input. A study case of a new steamflood area with 16 patterns of single reservoir target used 6 active observation wells and 15 complete logs sets (temperature, steam ID, and CO log), 19 incomplete logs sets (only temperature and steam ID) since 2014 to 2019. Those data were divided as follows ~80% of completed log set data for neural network training model and ~20% of completed log set data for testing the model. As the result of neural model testing, R2 is score 0.86 with RMS 5% oil saturation. In this testing step, oil saturation log prediction is compared to actual data. Only minor data that shows different oil saturation value and overall shape of oil saturation logs are match. This neural network model is then used for oil saturation log prediction in 19 incomplete log set. The oil saturation log prediction method can fill the gap of data to better describe the depletion process in a new steamflood area. This method also helps to align steam map and remaining oil to support reservoir management in a steamflood project.


2007 ◽  
Author(s):  
Zhongping Qian ◽  
Xiang‐Yang Li ◽  
Mark Chapman ◽  
Yonggang Zhang ◽  
Yanguang Wang

2021 ◽  
Author(s):  
Nasser Faisal Al-Khalifa ◽  
Mohammed Farouk Hassan ◽  
Deepak Joshi ◽  
Asheshwar Tiwary ◽  
Ihsan Taufik Pasaribu ◽  
...  

Abstract The Umm Gudair (UG) Field is a carbonate reservoir of West Kuwait with more than 57 years of production history. The average water cut of the field reached closed to 60 percent due to a long history of production and regulating drawdown in a different part of the field, consequentially undulating the current oil/water contact (COWC). As a result, there is high uncertainty of the current oil/water contact (COWC) that impacts the drilling strategy in the field. The typical approach used to develop the field in the lower part of carbonate is to drill deviated wells to original oil/water contact (OOWC) to know the saturation profile and later cement back up to above the high-water saturation zone and then perforate with standoff. This method has not shown encouraging results, and a high water cut presence remains. An innovative solution is required with a technology that can give a proactive approach while drilling to indicate approaching current oil/water contact and geo-stop drilling to give optimal standoff between the bit and the detected water contact (COWC). Recent development of electromagnetic (EM) look-ahead resistivity technology was considered and first implemented in the Umm Gudair (UG) Field. It is an electromagnetic-based signal that can detect the resistivity features ahead of the bit while drilling and enables proactive decisions to reduce drilling and geological or reservoir risks related to the well placement challenges.


Sign in / Sign up

Export Citation Format

Share Document