Influence of oil wettability upon spectral induced polarization of oil-bearing sands

Geophysics ◽  
2011 ◽  
Vol 76 (5) ◽  
pp. A31-A36 ◽  
Author(s):  
André Revil ◽  
Myriam Schmutz ◽  
Mike L. Batzle

The presence of oil in an unconsolidated granular porous material, like a sand, changes both the resistivity of the material and the value of the phase lag between the current and the voltage. We performed laboratory experiments to investigate the influence of oil wettability and water saturation upon the complex resistivity of oil-bearing sands in the frequency range 1 mHz–1 kHz. For a sand saturated by a nonwetting oil, both the resistivity and the magnitude of the phase increase with the oil saturation, as expected from theoretical considerations. In the case of a sand partially saturated by a wetting oil, we found that both the magnitude of the phase and the resistivity decrease with the oil saturation. The quadrature conductivity decreases with the oil with the same trend in presence of wetting and nonwetting oils for relative water saturation above 0.5. In the case of a nonwetting oil, the results are quantitatively predicted by available theories. In the case of a wet oil, our results could be interpreted as resulting from the increase of the cation exchange capacity associated with the presence of a polar component at the oil water interface.

2006 ◽  
Vol 9 (03) ◽  
pp. 259-265 ◽  
Author(s):  
Uffe Korsbech ◽  
Helle Aage ◽  
Kathrine Hedegaard ◽  
Bertel L. Andersen ◽  
Niels Springer

Summary The movement of connate water spiked with gamma-emitting 22 Na (a radioactive sodium isotope) was studied during laboratory waterflooding of oil-saturated chalk at connate-water saturation from a North Sea reservoir. Using a 1D gamma-monitoring technique, it was observed that connate water is piled up at the front of the injection water and forms a mixed water bank with almost 100% connate water in the front, behind which a gradual transition to pure injection water occurs. This result underpins log interpretations from waterflooded chalk reservoirs. An ad hoc model was set up by use of the results, and the process was examined theoretically at a larger scale. Introduction The behavior of the in-situ, or connate, water in an oil reservoir under waterflooding has been investigated only sparsely in the past. A study of the mobility of connate water in sandpacks during waterflooding showed that the connate water became mobile and formed a buffer zone between the injection water and the mobilized oil phase (Brown 1957). Water imbibition in a fractured chalk plug using D2O (labeled connate water) and nuclear magnetic resonance (NMR) imaging showed that the connate water was swept up in front of the imbibing water (Nielsen et al. 2000). If these observations are valid on a reservoir scale, it means that it is the connate water that actually displaces the oil during a waterflood. Laboratory corefloods have demonstrated that the remaining oil saturation after a waterflood depends on chalk type, chalk porosity, and initial oil saturation. Waterflooding of oil-saturated chalk cores develops an oil/water shock front that displaces the mobile oil in a nearly pistonlike manner with very little oil cut after water breakthrough, in agreement with theoretical expectations (Dake 1978). Sharp oil/water fronts have been observed from logging of waterflooded zones in North Sea chalk reservoirs (Ovens et al. 1998). The actual oil saturation and its potential variation within the waterflooded zone is, however, often difficult to assess from standard petrophysical logs of a waterflooded zone because of a change in resistivity and temperature after injection of cold seawater. An a priori model has been proposed by Ovens et al. (1998) from an inspection of resistivity profiles across waterflooded zones in the Danish North Sea. The observations indicate that the injection of cold seawater into an oil-bearing chalk reservoir will generate a bank of reservoir-temperature formation water between the cold injection water and the displaced oil. The logs (porosity, water saturation, and deep resistivity) show that the injected water does not mix thoroughly with the formation water when the oil/water front progresses through the reservoir. In an attempt to verify the a priori model, a dedicated laboratory waterflooding program was developed. Synthetic seawater with a chemical composition corresponding to diluted Dan field brine was injected into plugs saturated with oil and connate water of the same chemical composition as the synthetic seawater. The connate water, however, was spiked with 22Na (gamma ray emitter), whereby the movement of connate water could be followed in time and space. Basic parameters have been determined from the experiments, and an ad hoc model describing the interaction between injection water, oil, and connate water has been constructed. Finally, this model has been used to predict what will happen for a deep penetration of injection water into chalk saturated with oil and connate water.


2021 ◽  
Vol 25 (6 Part A) ◽  
pp. 4153-4160
Author(s):  
Junjie Dong ◽  
Rui Deng

The indoor comprehensive analysis of core saturation of airtight coring wells is an important part of well logging interpretation. According to the saturation data, the geological reserves can be accurately calculated, and the remaining oil saturation and water-flooded zone in the later stage of the production well can be accurately evaluated. Due to the influence of many factors in the coring process and the experiment process, the sum of the core oil and water saturation is usually not equal to 100%. At present, conventional airtight coring correction method is generally to analyze the oil-water saturation, and then correct the data of the same factors that affect the results. This article combines two methods for saturation correction of XX oilfield in China. For cores with consistent missing factors, mathematical statistics are used to correct the saturation. When most of the rock pores have irreducible water and remaining oil, the phase percolation split method is used for the correction after the experimental analysis. By comparing with the logging interpretation results and the results of adjacent wells, the feasibility of the comprehensive correction method can be verified.


Geofluids ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-17 ◽  
Author(s):  
Sébastien Savoye ◽  
Serge Lefevre ◽  
Agnès Fayette ◽  
Jean-Charles Robinet

The diffusion and adsorption behaviors of sodium and cesium were investigated in the Callovo-Oxfordian claystones (France) under unsaturated conditions. Through-, out-, and in-diffusion laboratory experiments were performed on intact and compacted samples. These samples were partially saturated using an osmotic method for imposed suction up to 9 MPa. This specific technique enabled us to obtain water saturation degree ranging from 81% to 100% for intact samples and from 70% to 100% for compacted materials. The results showed a very low impact of water saturation on the extent of adsorption for 22Na and cesium, onto intact and compacted materials. Such observations suggest that the saturation degrees were not low enough to limit the access of cations to adsorption sites on clay surfaces. At full saturation, enhanced diffusion for 22Na and cesium was clearly evidenced onto intact and compacted samples. Under unsaturated conditions, the diffusion behavior for Cs and 22Na was not only slower but also distinct as compared to fully saturated samples. For the intact rock and under suction of 1.9 MPa, the Cs diffusivity was reduced by a factor of 17, whereas for sodium, it was reduced by a factor of 5. Explanation was then proposed to explain such a difference.


Author(s):  
A. Syahputra

Surveillance is very important in managing a steamflood project. On the current surveillance plan, Temperature and steam ID logs are acquired on observation wells at least every year while CO log (oil saturation log or SO log) every 3 years. Based on those surveillance logs, a dynamic full field reservoir model is updated quarterly. Typically, a high depletion rate happens in a new steamflood area as a function of drainage activities and steamflood injection. Due to different acquisition time, there is a possibility of misalignment or information gaps between remaining oil maps (ie: net pay, average oil saturation or hydrocarbon pore thickness map) with steam chest map, for example a case of high remaining oil on high steam saturation interval. The methodology that is used to predict oil saturation log is neural network. In this neural network method, open hole observation wells logs (static reservoir log) such as vshale, porosity, water saturation effective, and pay non pay interval), dynamic reservoir logs as temperature, steam saturation, oil saturation, and acquisition time are used as input. A study case of a new steamflood area with 16 patterns of single reservoir target used 6 active observation wells and 15 complete logs sets (temperature, steam ID, and CO log), 19 incomplete logs sets (only temperature and steam ID) since 2014 to 2019. Those data were divided as follows ~80% of completed log set data for neural network training model and ~20% of completed log set data for testing the model. As the result of neural model testing, R2 is score 0.86 with RMS 5% oil saturation. In this testing step, oil saturation log prediction is compared to actual data. Only minor data that shows different oil saturation value and overall shape of oil saturation logs are match. This neural network model is then used for oil saturation log prediction in 19 incomplete log set. The oil saturation log prediction method can fill the gap of data to better describe the depletion process in a new steamflood area. This method also helps to align steam map and remaining oil to support reservoir management in a steamflood project.


2007 ◽  
Author(s):  
Zhongping Qian ◽  
Xiang‐Yang Li ◽  
Mark Chapman ◽  
Yonggang Zhang ◽  
Yanguang Wang

2021 ◽  
Author(s):  
Nasser Faisal Al-Khalifa ◽  
Mohammed Farouk Hassan ◽  
Deepak Joshi ◽  
Asheshwar Tiwary ◽  
Ihsan Taufik Pasaribu ◽  
...  

Abstract The Umm Gudair (UG) Field is a carbonate reservoir of West Kuwait with more than 57 years of production history. The average water cut of the field reached closed to 60 percent due to a long history of production and regulating drawdown in a different part of the field, consequentially undulating the current oil/water contact (COWC). As a result, there is high uncertainty of the current oil/water contact (COWC) that impacts the drilling strategy in the field. The typical approach used to develop the field in the lower part of carbonate is to drill deviated wells to original oil/water contact (OOWC) to know the saturation profile and later cement back up to above the high-water saturation zone and then perforate with standoff. This method has not shown encouraging results, and a high water cut presence remains. An innovative solution is required with a technology that can give a proactive approach while drilling to indicate approaching current oil/water contact and geo-stop drilling to give optimal standoff between the bit and the detected water contact (COWC). Recent development of electromagnetic (EM) look-ahead resistivity technology was considered and first implemented in the Umm Gudair (UG) Field. It is an electromagnetic-based signal that can detect the resistivity features ahead of the bit while drilling and enables proactive decisions to reduce drilling and geological or reservoir risks related to the well placement challenges.


2012 ◽  
Vol 1 (33) ◽  
pp. 50 ◽  
Author(s):  
Le Phuong Dong ◽  
Shinji Sato

Prototype scale laboratory experiments have been conducted to investigate the sheetflow sediment transport of uniform sands under different skewed-asymmetric oscillatory flows. Experimental results reveal that in most of the case with fine sand, the “cancelling effect”, which balances the on-/off-shore net transport under pure asymmetric/skewed flows and results a moderate net transport, was developed for combined skewed-asymmetric flow. However, under some certain conditions (T > 5s) with coarse sands, the onshore sediment transport was enhanced by 50% under combined skewed-asymmetric flows. Sand transport mechanism under oscillatory sheetflow conditions is also studied by comparing the maximum bed shear stress and the phase lag parameter at each half cycle. A comparison of measurements including the new experimental data with a number of practical sand transport formulations shows that the Dong et al. (2013) formulation performs the best in predicting the measured net transport rates over a wide range of experimental conditions


2021 ◽  
Vol 48 (2) ◽  
Author(s):  
Laura Juliana Rojas Cárdenas ◽  
Indira Molina

An hydrocarbon reservoir was characterized via a detailed geologic model, which allowed estimation of the original oil in place. The study characterizes a hydrocarbon reservoir of two fields of unit C7 of the Carbonera Formation within the Llanos Orientales basin of Colombia. This was done using well logs, the structural surface of the regional datum of the area, segments of the Yuca fault and a local fault of the reservoir, the  permeability equation, and J functions of the reservoir provided by the operating company. With this  information, a two-fault model and a grid with 3D cells was created. Each cell was assigned with a value of facies and petrophysical properties: porosity, permeability, and water saturation, to obtain a 3D model of  facies and petrophysical properties. Subsequently, we used the constructed models and oil-water contacts to  calculate the original oil in place for each field. Field 1 has a volume of six million barrels of oil and field 2 has  9 million barrels. 


2021 ◽  
Author(s):  
Marisely Urdaneta

Abstract This paper aims to address calibration of a coreflood Alkali Surfactant Polymer (ASP) formulation experiment through parametrization of fluid-fluid and rock-fluid interactions considering cation exchange capacity and by rock to guide an ASP pilot design. First of all, a series of chemical formulation experiments were studied in cores drilled from clastic reservoir so that displacement lab tests were run on linear and radial cores to determine the potential for oil recovery by ASP flooding and recommended the chemical formulation and flooding schemes, in terms of oil recovery. Therefore, to simulate the process, those tests performed with radial core injection were taken, because this type of test has a better representation of the fluid flow in reservoir, the fluids are injected by a perforation in the center of the core, moving in a radial direction the fluids inside the porous medium. Subsequently, displaced fluids are collected on the periphery of the core carrier and stored in graduated test tubes. The recommended test was carried out to the phase of numerical simulation and historical matching. Reservoir simulation is one of the most important tools available to predict behavior under chemical flooding conditions and to study sensitivities based on cost-effective process implementation. Then, a radial core simulation model was designed from formulation data with porosity of 42.6%, a pore volume (PV) of 344.45 ml, radius of 7.17 cm and weight of 1225.84 g. The initial oil saturation was 0.748 PV (257.58 ml), with a critical water saturation of 0.252 PV (86.78 ml). For the simulation model historical matching, adjustments were made until an acceptable comparison was obtained with laboratory test production data through parameterization of relative permeability curves, chemical adsorption parameters, polymer viscosity, among others; resulting in an accumulated effluents production mass 37% greater for alkali than obtained in the historical, regarding to surfactant the deviation was 8% considered acceptable and for the polymer the adjustment was very close. For the injector well bottom pressure, the viscosity ratio of the mixture was considered based on the polymer concentration and the effect of the shear rate on the viscosity of the polymer as well as the effect of salinity in the alkali case. Finally, a calibrated coreflood numerical simulation model was obtained for ASP flooding to design an ASP Pilot with a residual oil saturation of 0.09 PV (31 ml) meaning 64% more recovered oil compared to a waterflooding case.


Sign in / Sign up

Export Citation Format

Share Document