Diagnosis of Bacterial Sulfide Problems in Secondary Recovery and Salt Water Disposal Water Injection Systems

10.2118/887-g ◽  
1957 ◽  
Author(s):  
Burton H. Moore
2021 ◽  
Author(s):  
Jaime Orlando Castaneda ◽  
Almohannad Alhashboul ◽  
Amir Farzaneh ◽  
Mehran Sohrabi

Abstract CWI is affected by multiple factors, including the wettability of the rock. These experiments seek to determine the results that are obtained when CW is injected in a tertiary mode for systems: (1) wetted by water and (2) mixed wettability; to date, no study has used this approach. The same sandstone core was used in all trials, and each test consisted of saturating the core with live crude, followed by the injection of water as a secondary recovery and then the injection of CW as a tertiary recovery. An additional sensitivity test was conducted that consisted of varying the composition of the dissolved gas in the crude. In general, in a water wet system, the recovery associated with the injection of CW is higher (normalized) compared to a mixed wettability system. This does not mean that the results were negative in the mixed system. On the contrary, the results are positive since on the order of an additional 20% was recovered. However, the pressure differential in a mixed system is higher (14%) compared to water wet system. Although it is common knowledge that wettability of the rock affects the production and pressure results in an experiment, these are the first experiments that have been performed exclusively to determine quantitatively the response to CWI while maintaining the other parameters constant.


2021 ◽  
Author(s):  
Ali Al Jumah ◽  
Abdulkareem Hindawi ◽  
Fakhriya Shuaibi ◽  
Jasbindra Singh ◽  
Mohamed Siyabi ◽  
...  

Abstract The South Oman clusters A and B have reclassified their Deep-Water Disposal wells (DWD) into water injection (WI) wells. This is a novel concept where the excess treated water will be used in the plantation of additional reed beds (Cluster A) and the farming of palm trees (Cluster B), as well as act as pressure support for nearby fields. This will help solve multiple issues at different levels namely helping the business achieve its objective of sustained oil production, helping local communities with employment and helping the organization care for the environment by reducing carbon footprints. This reclassification covers a huge water volume in Field-A and Field-B where 60,000 m3/day and 40,000 m3/day will be injected respectively in the aquifer. The remaining total excess volume of approx. 200,000m3/d will be used for reed beds and Million Date Palm trees Project. The approach followed for the reclassification and routing of water will: Safeguard the field value (oil reserves) by optimum water injectionMaintain the cap-rock integrity by reduced water injection into the aquifer.Reduce GHG intensity by ±50% as a result of (i) reduced power consumption to run the DWD pumps and (ii) the plantation of trees (reed beds and palm trees).Generate ICV (in-country value) opportunities in the area of operations for the local community to use the excess water at surface for various projects.Figure 1DWD Reclassification benefits Multiple teams (subsurface. Surface, operations), interfaces and systems have been associated to reflect the re-classification project. This was done through collaboration of different teams and sections (i.e. EC, EDM, SAP, Nibras, OFM, etc). Water injection targets and several KPIs have been incorporated in various dashboards for monitoring and compliance purposes. Figure 2Teams Integration and interfaces It offers not only a significant boost to the sustainability of the business, but also pursues PDO's Water Management Strategy to reduce Disposal to Zero by no later than the year 2030 This paper will discuss how the project was managed, explain the evaluation done to understand the extent of the pressure support in nearby fields from DWD and the required disposal rate to maintain the desired pressures. Hence, reclassifying that part of deep-water disposal volume to water injection (WI) which requires a totally different water flood management system to be built around it.


Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-15
Author(s):  
Zhifang Zhou ◽  
Boran Zhang ◽  
Qiaona Guo ◽  
Shumei Zhu

Injecting freshwater and pumping salt water are effective methods to restore the salt water in a coastal area. Based on a one-dimensional vertical experiment, the variable density flow is simulated under the condition of different injection directions and injection rates of fresh water. A one-dimensional mathematical model of variable density flow and solute transport is established. The mathematical models are solved using the implicit difference method. Fortran code is developed to simulate and verify the vertical flow of variable density flow in different directions. Through both numerical simulation and experimental studies, it is found that the variable density fluid in the direction of reverse gravity is different from that in the direction of gravity. On this basis, the most effective desalination model of salt water is further discussed. It provides a theoretical and technical method for the restoration of salt water in the vertical injection of freshwater. In order to improve the remediation efficiency and reduce the cost in the engineering application, the suitable water injection rate should be ensured, considering the suitable construction time and zone of a study area.


Geophysics ◽  
1994 ◽  
Vol 59 (2) ◽  
pp. 192-201 ◽  
Author(s):  
P. A. White

The movement of 2000 liters of salt water after injection into groundwater within gravels a few meters below the ground surface at three injection sites was traced by six different resistivity monitoring arrays; the resistivity rectangle, Schlumberger sounding, Wenner sounding, Wenner fixed‐spacing, mise‐à‐la‐asse and downhole electrode array. Five of the arrays indicated groundwater flow direction and seepage velocity. As evidence indicates, similar geological and hydrogeological conditions exist at the injection sites. Therefore, comparisons between the sensitivity of the five arrays can be made and are as follows: resistivity rectangle—maximum decrease of 60 percent in derived potential differences; Schlumberger sounding— maximum decrease of 28 percent in measured apparent resistivity; Wenner sounding—maximum decrease of 20 percent in measured apparent resistivity, Wenner fixedspacing—maximum decrease of 22 percent in apparent resistivity; downhole electrode—maximum decrease of 38 percent in measured resistance. Measured potentials and derived values of potential gradient measured by the mise‐à‐la‐masse array indicated groundwater flow direction but not seepage velocity. Estimates of seepage velocity given by the resistivity arrays for the three salt water injection sites are between 260 ± 40 m/day and 700 ±100 m/day. These estimates are in broad agreement with values of seepage velocity derived from the point‐dilution technique, from previous salt water injection experiments, and from groundwater conductivity measurements using downhole probes.


2021 ◽  
Author(s):  
Gervasio Pimenta ◽  
Mohamad Hussain Ahmad ◽  
Akio Mizukami ◽  
Bogdan Andres

Abstract Glass Reinforced Epoxy (GRE), lining systems for API 5CT tubing have gained prominence in O&G industry, essentially due to the fact that GRE constitutes a physical barrier protecting the OCTG pipe from corrosive environment, and minimizing issues with scale deposition. ADNOC group companies have been building experience on the implementation of GRE Lined L-80 tubing by successfully using it in produced water disposal wells. Produced water is a highly corrosive medium due to dissolved CO2, H2S high to very high chloride content, high TDS, eventually containing bacteria. The corrosiveness of the fluid increases as the temperature increase from temperatures in the range of 30 – 50 degC at surface to reservoir temperature. The aggressiveness of this medium towards API 5CT L-80 or 13Cr / modified 13Cr increases with its contamination with oxygen. Dissolved oxygen is a strong depolarizer leading to high pitting rates if dissolved O2 content in the water is above 10 or 20ppb. Conventional completion of WDW in ADNOC Onshore is based on API 5CT L-80, and short life of the completion strings has been attributed to deficient water treatment (lack of oxygen scavenger, corrosion inhibitor unsuitable for downhole conditions. A life cycle cost analysis suggests that GRE lined OCTG could be a cost-effective solution for water injection. For this life cycle cost assessment, CAPEX (cost of L-80 completion string, combo corrosion inhibitor & oxygen scavenger skid and OPEX: cost of Combo chemical and monitoring activities for design life were considered, while achieving the required level of well integrity and lower operational safety risks (e.g. handling hazardous chemicals, monitoring activities)


1991 ◽  
Vol 14 (1) ◽  
pp. 103-110 ◽  
Author(s):  
M. D. Wensrich ◽  
K. M. Eastwood ◽  
C. D. Van Panhuys ◽  
J. M. Smart

AbstractThe Eider Oilfield is located some 160 knortheast of the Shetland Islands mainly in Block 211/16a, part of Production Licence P296, with the southern tip extending into Block 211/2la. The discovery well was drilled in 1976 in a water depth of about 530 ft. Hydrocarbons are trapped at a depth of 8750 ft TVSS in an easterly dipping fault block that is part of the Tern-Eider horst in the East Shetlands Basin. The reservoir is the Middle Jurassic Brent Group, deposited in a wave-dominated delta system. It has an average gross thickness of 259 ft and an average net thickness of 210 ft. Porosities average 23% and permeabilities 375 md. The expected STOIIP and Ultimate Recovery are estimated at 204 MMBBL and 85 MMBBL respectively, representing a recovery factor of 42%.The field is planned to be developed by five producers drilled along the crest of the structure. Pressure maintenance and sweep (secondary recovery) will be provided by four down-flank water injectors. The Eider production facility is a satellite platform of the neighbouring North Cormorant and Tern platforms and is designed for future unmanned operation. Production started in November 1988 and averaged some 54 000 BOPD. Water injection began in June 1989, using water, piped at injection pressure, from the Tern platform. First stage processing of the crude oil is carried out on the Eider platforms and then it is piped to the North Cormorant platform for further processing. From there it is evacuated via the Cormorant Alpha platform into the Brent System pipeline for export to the Sullom Voe terminal.


Sign in / Sign up

Export Citation Format

Share Document