GRE Lined OCTG as a Cost-Effective Solution for Water Disposal Wells

2021 ◽  
Author(s):  
Gervasio Pimenta ◽  
Mohamad Hussain Ahmad ◽  
Akio Mizukami ◽  
Bogdan Andres

Abstract Glass Reinforced Epoxy (GRE), lining systems for API 5CT tubing have gained prominence in O&G industry, essentially due to the fact that GRE constitutes a physical barrier protecting the OCTG pipe from corrosive environment, and minimizing issues with scale deposition. ADNOC group companies have been building experience on the implementation of GRE Lined L-80 tubing by successfully using it in produced water disposal wells. Produced water is a highly corrosive medium due to dissolved CO2, H2S high to very high chloride content, high TDS, eventually containing bacteria. The corrosiveness of the fluid increases as the temperature increase from temperatures in the range of 30 – 50 degC at surface to reservoir temperature. The aggressiveness of this medium towards API 5CT L-80 or 13Cr / modified 13Cr increases with its contamination with oxygen. Dissolved oxygen is a strong depolarizer leading to high pitting rates if dissolved O2 content in the water is above 10 or 20ppb. Conventional completion of WDW in ADNOC Onshore is based on API 5CT L-80, and short life of the completion strings has been attributed to deficient water treatment (lack of oxygen scavenger, corrosion inhibitor unsuitable for downhole conditions. A life cycle cost analysis suggests that GRE lined OCTG could be a cost-effective solution for water injection. For this life cycle cost assessment, CAPEX (cost of L-80 completion string, combo corrosion inhibitor & oxygen scavenger skid and OPEX: cost of Combo chemical and monitoring activities for design life were considered, while achieving the required level of well integrity and lower operational safety risks (e.g. handling hazardous chemicals, monitoring activities)

2021 ◽  
Vol 13 (9) ◽  
pp. 4651
Author(s):  
Ming-Lun Alan Fong

The analysis of ventilation strategies is fundamentally affected by regional climate conditions and local cost databases, in terms of energy consumption, CO2 emission and cost-effective analysis. A systematic approach is covered in this paper to estimate a local economic and environmental impact on a medium-sized space located in two regions during supply-and-installation and operation phases. Three ventilation strategies, including mixing ventilation (MV), displacement ventilation (DV) and stratum ventilation (SV) were applied to medium-sized air-conditioned space with this approach. The trend of the results for three ventilation systems in the life cycle assessment (LCA) and life cycle cost (LCC) analysis is SV < DV < MV. The result of CO2 emission and regional LCC shows that SV is the lowest one in both regional studies. In comparison with the Hong Kong Special Administrative Region (HKSAR) during 20 Service years, the case analysis demonstrates that the percentage differences in LCC analysis of MV, DV & SV in Guangdong are less than 20.5%, 19.4% and 18.82% respectively. Their CO2 emission of MV, DV and SV in Guangdong are more than HKSAR in 10.69%, 11.22% and 12.05%, respectively. The present study could provide information about regional effects in the LCA and LCC analysis of three ventilation strategies emissions, and thereby help set up models for decision-making on high efficiency and cost-effective ventilation strategy plans.


2013 ◽  
Vol 53 (1) ◽  
pp. 193
Author(s):  
Lyvonne Ly ◽  
Ian Fergus ◽  
Steve Page

The management of brine, generated from the desalination of CSG produced water, is a key challenge for the CSG industry. In many cases, the cost and technical challenges relating to the management of brine has a greater impact on the economic and technical feasibility of desalinating CSG produced water than the desalination plant itself. The challenge is to determine the best solution for brine management, given the high salinity of the brine and limited options available for acceptable disposal. This has driven the need for more sustainable options, including using salt recovery processes to recover the salts for beneficial use. Where suitable strata can be identified, brine injection may be considered as a low life-cycle cost solution for brine disposal. CSG brine is particularly high in alkalinity, and as such, brine management options, including acid mine waste neutralisation and recovery of salts (sodium chloride [NaCl] and sodium carbonate [Na2CO3]) are possible. The latter uses selective salt crystallisation, which is generally higher in capital and operating costs, but is offset by the revenue gained from the sale of salt(s). Other brine management options include solar evaporation ponds or zero liquid discharge technology to produce a mixed salt residue that can be disposed through onsite encapsulation or landfill. The feasibility and life-cycle cost of any brine management option depends primarily on the location of CSG sites and the availability of brine management disposal/sale opportunities in reasonable proximity—this is one of the greatest challenges for managing brackish CSG produced water sources, particularly as the CSG sites are in remote inland locations. Further challenges associated with the management of salts recovered include establishing a viable commercial route for the market sale of the salts. This peer-reviewed paper explores technical considerations, challenges and the life-cycle cost of the brine management options. The emerging trends for desalination and brine management in the CSG Industry will also be featured in this paper.


Author(s):  
Varun J. Prabhakar ◽  
Peter Sandborn

Long life cycle products, commonly found in aviation, medical and critical infrastructure applications, are often fielded and supported for long periods of time (20 years or more). The manufacture and support of long life cycle products rely on the availability of suitable parts, which over long periods of time, leaves the parts susceptible to a number of possible supply chain disruptions such as suppliers exiting the market, counterfeit part risks, and part obsolescence. One solution to mitigating the supply chain risk is the strategic formulation of suitable part sourcing strategies (optimally selecting one or more suppliers from which to purchase parts over the life of the part’s use within a product or within an organization). Strategic sourcing offers one way of avoiding the risk of part unavailability (and its associated penalties), but at the possible expense of qualification and support costs for multiple suppliers. Existing methods used to study part sourcing decisions are procurement-centric where cost tradeoffs focus on part pricing, negotiation practices and purchase volumes. These studies are commonplace in strategic parts management for short life cycle products; however, conventional procurement-centric approaches offer only a limited view when assessing parts used in long life cycle products. Procurement-driven decision-making provides little to no insight into the accumulation of life cycle cost (attributed to the adoption and use of the part), which can be significantly larger than procurement costs in long life cycle products. This paper presents a new life cycle modeling approach to quantify risk that enables cost effective part sourcing strategies. The method quantifies obsolescence risk as “annual expected total cost of ownership (TCO) per part site” modeled by estimating the likelihood of obsolescence and using that likelihood to determine the TCO allowing sourcing strategies to be compared on a life cycle cost basis. The method is demonstrated for electronic parts in an example case study of linear regulators and shows that when procurement and inventory costs are small contributions to the part’s TCO, the cost of qualifying and supporting a second source outweighs the benefits of extending the part’s effective procurement life.


2012 ◽  
Author(s):  
Jin How Ho ◽  
Azlan Abd. Rahman

Artikel ini membincangkan kajian ringkas berkaitan analisis kos kitaran hayat terhadap langkah-langkah pembaikan pengaratan bagi jambatan dan struktur marin konkrit yang terdedah kepada karbonasi atau serangan natrium klorida daripada air laut atau sumber-sumber lain. Perisian kos kitaran hayat, Bridge LCC 2.0 digunakan untuk menjalankan analisi kitaran hayat untuk tiga kes kajian melibatkan kaedah nilai bersih kini. Keputusan kajian menunjukkan analisis kos kitaran hayat berkeupayaan untuk membantu jurutera dan agensi pengangkutan dalam menilai keputusan penyelenggaraan yang efektif berkaitan dengan masalah pengaratan. Ia boleh digunakan sebagai alat analisis ekonomi kejuruteraan yang membantu mantaksir kos-kos perbezaan dan membuat pilihan terhadap langkah pembaikan pengaratan yang berkesan. Analisis kos kitaran hayat bagi langkah pembaikan dipengaruhi oleh banyak pemboleh ubah seperti kos permulaan, kos penyelenggaraan, tahun kekerapan, dan jangka masa analisis. Amalan terbaik untuk analisis kos kitaran hayat bukan sahaja mengambil kira perbelanjaan oleh agensi, tetapi perlu mempertimbangkan kos-kos oleh pengguna dan analisis sensitiviti di sepanjang jangka hayat sesuatu langkah pembaikan. Kata kunci: Analisis kos kitaran hayat, jambatan konkrit, pengaratan, langkah, pembaikan, pemulihan struktur, keberkesanan kos, kaedah nilai bersih kini (NPV) This paper discusses a short study on life cycle cost analysis (LCCA) on corrosion remedial measures for concrete bridges and marine structures, which are subjected to carbonation or ingress of sodium chloride from sea water and other sources. Life cycle costing software, Bridge LCC 2.0, was used to perform life cycle cost analyses on three case studies, based on net present value method. The analysis of the results showed that LCCA is capable of assisting engineers or transportation agencies to evaluate optimum maintenance decisions in corrosion–related problems. It can be used as an engineering economic analysis tool that helps in qualifying the differential costs and choosing the most cost–effective corrosion remedial measures. Life cycle costs for the remedial measures are influenced by many costing variables such as initial costs, periodic maintenance costs, frequency years and analysis period. The best practice of LCCA should not only consider agency expenditures but also user costs and sensitivity analysis throughout the service life of a remedial measure. Key words: Life cycle analysis, concrete bridges, corrosion, remedial measures, structural rehabilitation, cost-effective, net present value method (NPV)


2017 ◽  
Vol 24 (s2) ◽  
pp. 164-171
Author(s):  
Da-yong Zhang ◽  
Song-song Yu ◽  
Qian-jin Yue

Abstract In China, the oil and natural gas resources of Bohai Bay are mainly marginal oil fields. It is necessary to build both iceresistant and economical offshore platforms. However, there are many risks during the life cycle of offshore platforms due to the imperfect preliminary design for the Bohai Sea economical ice-resistant structures. As a result, the whole life-cycle design should be considered, including plan, design, construction, management and maintenance design. Based on the demand of existing codes and research of the basic design, structural ice-resistant performance and the reasonable management and maintenance, the life-cycle design theory is discussed. It was concluded that the life-cycle cost-effective optimum design proposed will lead to a minimum risk.


Author(s):  
A P Patra ◽  
P Söderholm ◽  
U Kumar

Life-cycle cost (LCC) is used as a cost-effective decision support for maintenance of railway track infrastructure. However, a fair degree of uncertainty associated with the estimation of LCC is due to the statistical characteristics of reliability and maintainability parameters. This paper presents a methodology for estimation of uncertainty linked with LCC, by a combination of design of experiment and Monte Carlo simulation. The proposed methodology is illustrated by a case study of Banverket (Swedish National Rail Administration). The paper also includes developed maintenance cost models for track.


2016 ◽  
Vol 7 ◽  
pp. 2100-2115 ◽  
Author(s):  
Florian Antony ◽  
Rainer Grießhammer ◽  
Thomas Speck ◽  
Olga Speck

Background: The debate on the question whether biomimetics has a specific potential to contribute to sustainability is discussed among scientists, business leaders, politicians and those responsible for project funding. The objective of this paper is to contribute to this controversial debate by presenting the sustainability assessment of one of the most well-known and most successful biomimetic products: the façade paint Lotusan®. Results: As a first step it has been examined and verified that the façade paint Lotusan® is correctly defined as a biomimetic product. Secondly, Lotusan® has been assessed and compared to a conventional façade paint within the course of a detailed product sustainability assessment (PROSA). For purposes of comparison, the façade paint Jumbosil® was chosen as reference for a conventional paint available on the market. The benefit analysis showed that both paints fulfil equally well the requirements of functional utility. With respect to the symbolic utility, Lotusan® has a particular added aesthetic value by the preservation of the optical quality over the life cycle. Within the social analysis no substantial differences between the two paints could be found regarding the handling and disposal of the final products. Regarding the life-cycle cost, Lotusan® is the more expensive product. However, the higher investment cost for a Lotusan®-based façade painting are more than compensated by the longer life time, resulting in both reduced overall material demand and lower labour cost. In terms of the life-cycle impact assessment, it can be ascertained that substantial differences between the paints arise from the respective service life, which are presented in terms of four scenario analyses. Conclusion: In summary, the biomimetic façade paint Lotusan® has been identified as a cost-effective and at the same time resource-saving product. Based on the underlying data and assumptions it could be demonstrated that Lotusan®-based façade paintings have a comparatively low overall impact on the environment. Summarizing our results, it can be emphasized that Lotusan® is the more favourable product compared to Jumbosil® according to sustainability aspects.


Author(s):  
Khanh Q. Bui ◽  
Lokukaluge P. Perera

Abstract Stringent regulations regarding environmental protection and energy efficiency (i.e., emission limits regarding NOx, SOx pollutants and the IMO greenhouse gases reduction target) will mark a significant shift to the maritime industry. In the first place, the shipping industry has strived to work towards feasible technologies for regulatory compliance. Nevertheless, life cycle cost appraisal attaches much consideration of decision-makers when it comes to investment decisions on new technologies. Therefore, the life cycle cost analysis (LCCA) is proposed in this study to evaluate the cash flow budgeting and cost performance of the proposed technologies over their life cycles. In the second place, environmental regulations may support innovation especially in the era of digitalization. The industrial digitalization is expected to revolutionize all of the aspects of shipping and enable the achievement of energy-efficient and environmental-friendly maritime operations. The so-called Internet of things (IoT) with the utilization of sensor technologies as well as data acquisition systems can facilitate the respective maritime operations by means of vessel operational performance monitoring. The big data sets obtained from IoT should be properly analyzed with the help of Artificial Intelligence (AI) and Machine Learning (ML) approaches. Our contribution in this paper is to propose a decision support framework, which comprises the LCCA analysis and advanced data analytics for ship performance monitoring, will play a pivotal role for decision-making processes towards cost-effective and energy-efficient shipping.


2015 ◽  
Vol 55 (2) ◽  
pp. 485
Author(s):  
Abbas Zeinijahromi ◽  
Pavel Bedrikovetski

Excessive water production is a major factor in reduced well productivity. This can result from water channelling from the water table to the well through natural fractures or faults, water breakthrough in high permeability zones, or water coning. The use of foams or gels for controlling water production through high-permeable layers has been tested successfully in several field cases. A large treatment volume, however, is required to block the water influx that generally involves high operational and material costs. This extended abstract proposes a new cost-effective method of creating a low-permeable barrier against the produced water with induced formation damage. The method includes applying induced formation damage to block the water influx without hindering the oil production. This can be achieved by injection of a small slug of fresh water into the water-producing layer. This results in release of in situ fines from the matrix, which can decrease permeability and create a local low-permeable barrier to the producing water. In large-scale approximation, water injection with induced fines migration is analogous to polymer flooding. This analogy is used to model the fresh water with induced formation damage. Sensitivity studies showed that the injection of 0.01 PVI of fresh water resulted in the blockage of the water-producing layer and an incremental recovery by 8% in field case A, with respect to the standard production scenario. The authors found that the incremental gas recovery with induced formation damage was sensitive to reservoir heterogeneity, permeability reduction and slug volume.


2021 ◽  
Author(s):  
Karthik Ilangovan ◽  
Mazlan Dindi ◽  
Alexander Fuglesang ◽  
Bastiaen Van Der Rest

Abstract In recent years, various operating companies have been working on the processes of "Simplification, Standardization, Automation, Digitalization, and Optimization in several elements". To achieve this, there are tremendous subsea technology developments going on all over the world in many areas such as; design in terms of size and weight, improvement in reliability, advanced materials, flow assurance, digital tools, real time condition monitoring and control, installation and operation. The development of Subsea technology continues to be an important part of subsea field development projects to reduce the life cycle costs, increase recovery, provide solution to long tieback problems and challenges. PETRONAS ("the Company") is pursuing an Upstream Life Cycle Cost (CAPEX/OPEX) reduction approach under the Facilities of Future (FOF) program and mission called "Subsea Factory". The FOF target is to reduce Upstream life cycle cost by 40% starting from 2025 and Subsea Factory is one of the enablers to contribute to the reduction. There are four primary technologies focused on Subsea Factory: Subsea Separation, Subsea Multiphase Pump, Water Injection and Subsea Storage. The Subsea Multiphase Pump is one of the prioritized technologies for Subsea Factory to contribute to a 40% reduction. Subsea multiphase pump technology has great potential to reduce the CAPEX/OPEX and increase oil recovery, but due to the high equipment cost, huge topside space requirement, reliability and operating issues become very challenging and limit its application to operating companies. The Company collaborates with FASTsubsea AS on a Joint Industry Project to develop and qualify "the World first All Electric & Topside-less Subsea Multiphase Pump Technology". The uniqueness about this technology compared to commonly installed subsea pump is that it requires much less topside space as there is no need for variable speed drives or barrier fluid hydraulic power units. This paper describes the qualification and application of All-electric & Topside-less subsea multiphase pump technology in the Company - Subsea Factory mission, including: pain point with conventional subsea multiphase pumpthe Joint Industrial Project initiative with respect to technology development to pilot test to maturityimplementation of this technology and value creation in upcoming field development projectthe case study and potential of this technology for the Company future field development project


Sign in / Sign up

Export Citation Format

Share Document