Review of the Molecular Structure and Aggregation of Asphaltenes and Petroleomics

SPE Journal ◽  
2008 ◽  
Vol 13 (01) ◽  
pp. 48-57 ◽  
Author(s):  
Oliver C. Mullins

Summary Tremendous strides have been made recently in asphaltene science. Many advanced analytical techniques have been applied recently to asphaltenes, elucidating many asphaltene properties. The inability of certain techniques to provide correct asphaltene parameters has also been clarified. Longstanding controversies have been resolved. For example, molecular structural issues of asphaltenes have been resolved; in particular, asphaltene molecular weight is now known. The primary aggregation threshold has recently been established by a variety of techniques. Characterization of asphaltene interfacial activity has advanced considerably. The hierarchy of asphaltene aggregation has emerged into a fairly comprehensive picture, essentially in accord with the Yen model with the additional inclusion of certain constraints. Crude oil and asphaltene science is now poised to develop proper structure-function relations that are the defining objective of the new field: petroleomics. The purpose of this paper is to review these developments in order to present a more clear and accessible picture of asphaltenes, especially considering that the asphaltene literature is a bit opaque. Introduction The asphaltenes are a very important class of compounds in crude oils (Chilingarian and Yen 1978; Bunger and Li 1981; Sheu and Mullins 1995; Mullins and Sheu 1998; Mullins et al. 2007c). The asphaltenes represent a complex mixture of compounds and are defined by their solubility characteristics, not by a specific chemical classification. A common (laboratory) definition of asphaltenes is that they are toluene soluble, n-heptane insoluble. Other light alkanes are sometimes used to isolate asphaltenes. This solubility classification is very useful for crude oils because it captures the most aromatic portion of crude oil. As we will see, this solubility defintion also captures those molecular components of asphaltene that aggregate. Other carbonaceous materials such as coal do possess an asphaltene fraction, but that often will not correspond to the most aromatic fraction. Petroleum asphaltenes, the subject of this paper, can undergo phase transitions that are an impediment in the production of crude oil. Fig. 1 shows a picture of an asphaltene deposit in a pipeline; obviously, asphaltene deposition is detrimental to the production of oil. Immediately it becomes evident that different operational definitions apply for the term asphaltene in the field vs. the lab. Indeed, the field deposit is very enriched in n-heptane-insoluble, toluene-soluble materials, but this field asphaltene deposit is not identically the standard laboratory solubility class. It is common knowledge that a pressure drop on certain live crude oils (containing dissolved gas) can cause asphaltene flocculation, the first step in creating deposits that are seen in Fig. 1. Highly compressible, very undersaturated crude oils are most susceptible to asphaltene deposition problems with a pressure drop (de Boer et al. 1995). In depressurization flocculation, the character of the asphaltene flocs is dependent on the extent of pressure drop, suggesting some variations in the corresponding chemical composition (Hammami et al. 2000; Joshi et al. 2001). Comingling different oils can result in asphaltene precipitation that can resemble solvent precipitation. Asphaltenes are hydrogen-deficient compared to alkanes; thus, either hydrogen must be added or coke removed in crude oil refining to generate transportation fuels. Thus, asphaltene content lowers the economic value of crude oil. Increasing asphaltene content is associated with dramatically increasing viscosity, especially at room temperature; again, this is of operational concern. The strong temperature dependence of viscosity of asphaltic materials is one of their important properties that make them useful for paving and coating; application of asphaltic materials is facile at moderately high temperatures, while desired rheological properties are obtained at ambient temperatures.

2018 ◽  
Vol 5 (1) ◽  
pp. 43-54
Author(s):  
Suresh Aluvihara ◽  
Jagath K Premachandra

Corrosion is a severe matter regarding the most of metal using industries such as the crude oil refining. The formation of the oxides, sulfides or hydroxides on the surface of metal due to the chemical reaction between metals and surrounding is the corrosion that  highly depended on the corrosive properties of crude oil as well as the chemical composition of ferrous metals since it was expected to investigate the effect of Murban and Das blend crude oils on the rate of corrosion of seven different ferrous metals which are used in the crude oil refining industry and investigate the change in hardness of metals. The sulfur content, acidity and salt content of each crude oil were determined. A series of similar pieces of seven different types of ferrous metals were immersed in each crude oil separately and their rates of corrosion were determined by using their relative weight loss after 15, 30 and 45 days. The corroded metal surfaces were observed under the microscope. The hardness of each metal piece was tested before the immersion in crude oil and after the corrosion with the aid of Vicker’s hardness tester. The metallic concentrations of each crude oil sample were tested using atomic absorption spectroscopy (AAS). The Das blend crude oil contained higher sulfur content and acidity than Murban crude oil. Carbon steel metal pieces showed the highest corrosion rates whereas the stainless steel metal pieces showed the least corrosion rates in both crude oils since that found significant Fe and Cu concentrations from some of crude oil samples. The mild steel and the Monel showed relatively intermediate corrosion rates compared to the other types of ferrous metal pieces in both crude oils. There was a slight decrease in the initial hardness of all the ferrous metal pieces due to corrosion.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2766 ◽  
Author(s):  
Jandyson Santos ◽  
Alberto Wisniewski Jr. ◽  
Marcos Eberlin ◽  
Wolfgang Schrader

Different ionization techniques based on different principles have been applied for the direct mass spectrometric (MS) analysis of crude oils providing composition profiles. Such profiles have been used to infer a number of crude oil properties. We have tested the ability of two major atmospheric pressure ionization techniques, electrospray ionization (ESI(±)) and atmospheric pressure photoionization (APPI(+)), in conjunction with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). The ultrahigh resolution and accuracy measurements of FT-ICR MS allow for the correlation of mass spectrometric (MS) data with crude oil American Petroleum Institute (API) gravities, which is a major quality parameter used to guide crude oil refining, and represents a value of the density of a crude oil. The double bond equivalent (DBE) distribution as a function of the classes of constituents, as well as the carbon numbers as measured by the carbon number distributions, were examined to correlate the API gravities of heavy, medium, and light crude oils with molecular FT-ICR MS data. An aromaticity tendency was found to directly correlate the FT-ICR MS data with API gravities, regardless of the ionization technique used. This means that an analysis on the molecular level can explain the differences between a heavy and a light crude oil on the basis of the aromaticity of the compounds in different classes. This tendency of FT-ICR MS with all three techniques, namely, ESI(+), ESI(−), and APPI(+), indicates that the molecular composition of the constituents of crude oils is directly associated with API gravity.


2020 ◽  
Vol 8 (1) ◽  
pp. 28-42
Author(s):  
Suresh Aluvihara ◽  
Jagath Premachandra

In the industry of petroleum oil refining industry the term of corrosion is frequently applicable regarding the several incidents because of the corrosiveness of petroleum oils due to the presence of trace corrosive compounds in such petroleum oils since the occurrences. Usually the corrosion is the results of chemical or electrochemical process of metals when it is exposing to the corrosive environment. The investigations of the impact of the organic acids, salts, elemental sulfur and the Mercaptans on the corrosion rates of seven different types of ferrous metals and the analysis of the nature of the corrosion between these materials were the objectives of the existing research. The relevant corrosive properties of two different types of selected crude oils and the chemical compositions of selected seven different types of ferrous metals were tested by the standard methods and instruments. A batch of similar sized metal coupons was immersed in both crude oil samples separately as three homogeneous metal coupons per each crude oil container. In order of after 15, 30 and 45 days from the immersion the corrosion rates of such metal coupons were determined by the weight loss method as three sets of samples while observing the corroded metal surfaces through an optical microscope. In addition, the decay of ferrous and copper from metals into crude oils while the interaction and the deductions of the initial hardness of metals were tested. As the basic investigations there were observed the relatively lower corrosion rates from stainless steels, relatively higher impact from salts on the metallic corrosion at lower temperatures, formations of FeS, Fe2O3, corrosion cracks and pitting, significant decays of ferrous and copper from some metals and the slight reductions of the initial hardness of metals after the interaction with the petroleum oils.


Author(s):  
Abdus Saboor ◽  
Nimra Yousaf ◽  
Javed Haneef ◽  
Syed Imran Ali ◽  
Shaine Mohammadali Lalji

AbstractAsphaltene Precipitation is a major issue in both upstream and downstream sectors of the Petroleum Industry. This problem could occur at different locations of the hydrocarbon production system i.e., in the reservoir, wellbore, flowlines network, separation and refining facilities, and during transportation process. Asphaltene precipitation begins due to certain factors which include variation in crude oil composition, changes in pressure and temperature, and electrokinetic effects. Asphaltene deposition may offer severe technical and economic challenges to operating Exploration and Production companies with respect to losses in hydrocarbon production, facilities damages, and costly preventive and treatment solutions. Therefore, asphaltene stability monitoring in crude oils is necessary for the prevention of aggravation of problem related to the asphaltene deposition. This study will discuss the performance of eleven different stability parameters or models already developed by researchers for the monitoring of asphaltene stability in crude oils. These stability parameters include Colloidal Instability Index, Stability Index, Colloidal Stability Index, Chamkalani’s stability classifier, Jamaluddin’s method, Modified Jamaluddin’s method, Stankiewicz plot, QQA plots and SCP plots. The advantage of implementing these stability models is that they utilize less input data as compared to other conventional modeling techniques. Moreover, these stability parameters also provide quick crude oils stability outcomes than expensive experimental methods like Heithaus parameter, Toluene equivalence, spot test, and oil compatibility model. This research study will also evaluate the accuracies of stability parameters by their implementation on different stability known crude oil samples present in the published literature. The drawbacks and limitations associated with these applied stability parameters will also be presented and discussed in detail. This research found that CSI performed best as compared to other SARA based stability predicting models. However, considering the limitation of CSI and other predictors, a new predictor, namely ANJIS (Abdus, Nimra, Javed, Imran & Shaine) Asphaltene stability predicting model is proposed. ANJIS when used on oil sample of different conditions show reasonable accuracy. The study helps Petroleum companies, both upstream and downstream sector, to determine the best possible SARA based parameter and its associated risk used for the screening of asphaltene stability in crude oils.


2018 ◽  
Vol 6 ◽  
pp. 3-11
Author(s):  
Suresh Aluvihara ◽  
Jagath K. Premachandra

Crude oil is an unrivaled earth resource for the most of industrial applications. In the refining process of crude oil, ferrous metals play a severe role against the harsh environment while confronting adverse influences of crude oils such as the corrosion of ferrous metals. The formation of metal oxides, sulfides, hydroxides or any compound related with carboxylic group on the metal surface is known as the corrosion also mainly depends on the sulfur content, acidity, salt content and mercaptans content of relevant crude oils as well as the chemical composition of the metal. In this research it was expected to speculate the effect of such corrosive properties of Murban and Das Blend crude oils on seven different types of ferrous metals which are used in crude oil refining industry of Sri Lanka. The sulfur content, salt content, acidity and mercaptans content of each crude oil were determined by the succession of XRF analyzer, analyzer of salt and titration methods. A range of similar sized pieces of seven different types of ferrous metals were immersed in both crude oils separately and their corrosion rates were determined after 15, 30 and 45 days from the immersion by the weight loss method while observing the corroded metal surfaces under the optical microscope. The metallic concentrations in both crude oil samples after the experiment were tested by the AAS. It was found that the higher content of sulfur, acidity, mercaptans and lower content of salt in the Das blend than the Murban. According to the corrosion rates of metals, four types of metals showed higher rate of corrosion in Murban while other metals are showing higher corrosion rate in Das blend also higher metallic concentrations were obtained from Murban crude oil samples than Das Blend crude oil samples in the analysis of the AAS.


2012 ◽  
Author(s):  
Katsumo Takabayashi ◽  
Haruo Maeda ◽  
Yoshihiro Miyagawa ◽  
Masayuki Ikarashi ◽  
Hiroshi Okabe ◽  
...  

Heavy crude oil is the crude oil with no gas composition and major constituents are asphaltene, resins, saturates and aromatics. Heavy crude oil is capable of producing a low high valued products and high low valued products. Asphaltene is a molecular substance that acts as a binding molecule to help in the recovery of heavy crude oil. On the contrary, an asphaltene deposition becomes troublesome in the heavy crude oil transportation through pipelines. In this research article, the heavy crude oil was collected from the western part of Indian oilfield and subjected to the separation of asphaltene content by the addition of aliphatic solvent. The results of separation of asphaltene from the heavy crude oil by the addition of n-heptane and n-hexane were found to be 15 wt. % and 17 wt. %. The asphaltene will cause moderate deposition problem during the production and transportation of investigated heavy crude oil.


Author(s):  
Huijun Zhao ◽  
Xiang Ding ◽  
Pengfei Yu ◽  
Yun Lei ◽  
Xiaofei Lv ◽  
...  

Resources ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 75
Author(s):  
Ivelina K. Shishkova ◽  
Dicho S. Stratiev ◽  
Mariana P. Tavlieva ◽  
Rosen K. Dinkov ◽  
Dobromir Yordanov ◽  
...  

Thirty crude oils, belonging to light, medium, heavy, and extra heavy, light sulfur, and high sulfur have been characterized and compatibility indices defined. Nine crude oil compatibility indices have been employed to evaluate the compatibility of crude blends from the thirty individual crude oils. Intercriteria analysis revealed the relations between the different compatibility indices, and the different petroleum properties. Tetra-plot was employed to model crude blend compatibility. The ratio of solubility blending number to insolubility number was found to best describe the desalting efficiency, and therefore could be considered as the compatible index that best models the crude oil blend compatibility. Density of crude oil and the n-heptane dilution test seem to be sufficient to model, and predict the compatibility of crude blends.


Chemosphere ◽  
2021 ◽  
pp. 131563
Author(s):  
Laurens van Gelderen ◽  
Kristoffer Gulmark Poulsen ◽  
Jan H. Christensen ◽  
Grunde Jomaas

Sign in / Sign up

Export Citation Format

Share Document