scholarly journals Genotyping pepper varieties using Target SNP-seq reveals that population structure clusters according to fruit shape

2019 ◽  
Author(s):  
Heshan Du ◽  
Jingjing Yang ◽  
Bin Chen ◽  
Xiaofen Zhang ◽  
Jian Zhang ◽  
...  

Abstract Background The widely cultivated pepper (Capsicum spp.) is one of the most diverse vegetables; however, little research has characterized the genetic diversity and relatedness of commercial varieties grown in China. In this study, a panel of single-nucleotide polymorphisms (SNPs) was created that consisted of 97 perfect SNPs, which were identified using re-sequencing data from 35 diverse C. annuum lines. Based on this panel, a Target SNP-seq was designed that combined the multiplex amplification of the perfect SNPs with Illumina sequencing to detect polymorphisms across 271 commercial pepper varieties. Results The perfect SNPs panel had a high discriminating capacity due to the average value of polymorphism information content (PIC), observed heterozygosity (Ho), expected heterozygosity (He), and minor allele frequency (MAF), which were 0.31, 0.28, 0.4, and 0.31, respectively. Notably, the studied pepper varieties were morphologically categorized based on fruit shape; blocky, long horn, short horn, and linear-fruited. The long horn-fruited population exhibited the most genetic diversity followed by the short horn, linear, and blocky-fruited populations. A set of 35 core SNPs were then used as KASPar markers, another robust genotyping technique for variety identification. Analysis of genetic relatedness using principal component analysis (PCA) and phylogenetic tree construction indicated that the four fruit shape populations clustered separately with limited overlaps. Based on STRUCTURE clustering, it was possible to divide the varieties into five subpopulations, which correlated with fruit shape. Further, the subpopulations were statistically different according to a randomization test and Fst statistics. Notably, two SNP loci, CaSNP118 and CaSNP053, which are located on chromosome 11 and 6 were significantly associated with fruit shape (p < 1.0 × 10 -4) Conclusions Target SNP-seq developed in this study appears as an efficient power tool to detect the genetic diversity, population relatedness and molecular breeding in pepper. Moreover, this study demonstrates that the genetic structure of the pepper varieties is significantly influenced by breeding programs focused on fruit shape.

2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Heshan Du ◽  
Jingjing Yang ◽  
Bin Chen ◽  
Xiaofen Zhang ◽  
Jian Zhang ◽  
...  

Abstract Background The widely cultivated pepper (Capsicum spp.) is one of the most diverse vegetables; however, little research has focused on characterizing the genetic diversity and relatedness of commercial varieties grown in China. In this study, a panel of 92 perfect single-nucleotide polymorphisms (SNPs) was identified using re-sequencing data from 35 different C. annuum lines. Based on this panel, a Target SNP-seq genotyping method was designed, which combined multiplex amplification of perfect SNPs with Illumina sequencing, to detect polymorphisms across 271 commercial pepper varieties. Results The perfect SNPs panel had a high discriminating capacity due to the average value of polymorphism information content, observed heterozygosity, expected heterozygosity, and minor allele frequency, which were 0.31, 0.28, 0.4, and 0.31, respectively. Notably, the studied pepper varieties were morphologically categorized based on fruit shape as blocky-, long horn-, short horn-, and linear-fruited. The long horn-fruited population exhibited the most genetic diversity followed by the short horn-, linear-, and blocky-fruited populations. A set of 35 core SNPs were then used as kompetitive allele-specific PCR (KASPar) markers, another robust genotyping technique for variety identification. Analysis of genetic relatedness using principal component analysis and phylogenetic tree construction indicated that the four fruit shape populations clustered separately with limited overlaps. Based on STRUCTURE clustering, it was possible to divide the varieties into five subpopulations, which correlated with fruit shape. Further, the subpopulations were statistically different according to a randomization test and Fst statistics. Nine loci, located on chromosomes 1, 2, 3, 4, 6, and 12, were identified to be significantly associated with the fruit shape index (p < 0.0001). Conclusions Target SNP-seq developed in this study appears as an efficient power tool to detect the genetic diversity, population relatedness and molecular breeding in pepper. Moreover, this study demonstrates that the genetic structure of Chinese pepper varieties is significantly influenced by breeding programs focused on fruit shape.


2021 ◽  
Author(s):  
Guai-qiang Chai ◽  
Yizhong Duan ◽  
Peipei Jiao ◽  
Zhongyu Du ◽  
Furen Kang

Abstract Background:Elucidating and revealing the population genetic structure, genetic diversity and recombination is essential for understanding the evolution and adaptation of species. Ammopiptanthus, which is an endangered survivor from the Tethys in the Tertiary Period, is the only evergreen broadleaf shrub grown in Northwest of China. However, little is known about its genetic diversity and underlying adaptation mechanisms. Results:Here, 111 Ammopiptanthus individuals collected from fifteen natural populations in estern China were analyzed by means of the specific locus amplified fragment sequencing (SLAF-seq). Based on the single nucleotide polymorphisms (SNPs) and insertions and deletions (InDels) detected by SLAF-seq, genetic diversity and markers associated with climate and geographical distribution variables were identified. The results of genetic diversity and genetic differentiation revealed that all fifteen populations showed medium genetic diversity, with PIC values ranging from 0.1648 to 0.3081. AMOVA and Fst indicated that a low genetic differentiation existed among populations. Phylogenetic analysis showed that NX-BG and NMG-DQH of fifteen populations have the highest homology,while the genetic structure analysis revealed that these Ammopiptanthus germplasm accessions were structured primarily along the basis of their geographic collection, and that an extensive admixture occurred in each group. In addition, the genome-wide linkage disequilibrium (LD) and principal component analysis showed that Ammopiptanthus nanus had a more diverse genomic background, and all genetic populations were clearly distinguished, although different degrees of introgression were detected in these groups. Conclusion:Our study could provide guidance to the future design of association studies and the systematic utilization and protection of the genetic variation characterizing the Ammopiptanthus.


Plants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1190 ◽  
Author(s):  
Eunju Seo ◽  
Kipoong Kim ◽  
Tae-Hwan Jun ◽  
Jinsil Choi ◽  
Seong-Hoon Kim ◽  
...  

Cowpea is one of the most essential legume crops providing inexpensive dietary protein and nutrients. The aim of this study was to understand the genetic diversity and population structure of global and Korean cowpea germplasms. A total of 384 cowpea accessions from 21 countries were genotyped with the Cowpea iSelect Consortium Array containing 51,128 single-nucleotide polymorphisms (SNPs). After SNP filtering, a genetic diversity study was carried out using 35,116 SNPs within 376 cowpea accessions, including 229 Korean accessions. Based on structure and principal component analysis, a total of 376 global accessions were divided into four major populations. Accessions in group 1 were from Asia and Europe, those in groups 2 and 4 were from Korea, and those in group 3 were from West Africa. In addition, 229 Korean accessions were divided into three major populations (Q1, Jeonra province; Q2, Gangwon province; Q3, a mixture of provinces). Additionally, the neighbor-joining tree indicated similar results. Further genetic diversity analysis within the global and Korean population groups indicated low heterozygosity, a low polymorphism information content, and a high inbreeding coefficient in the Korean cowpea accessions. The population structure analysis will provide useful knowledge to support the genetic potential of the cowpea breeding program, especially in Korea.


2017 ◽  
Vol 2 ◽  
pp. 10 ◽  
Author(s):  
Irene Omedo ◽  
Polycarp Mogeni ◽  
Teun Bousema ◽  
Kirk Rockett ◽  
Alfred Amambua-Ngwa ◽  
...  

Background: The first models of malaria transmission assumed a completely mixed and homogeneous population of parasites.  Recent models include spatial heterogeneity and variably mixed populations. However, there are few empiric estimates of parasite mixing with which to parametize such models. Methods: Here we genotype 276 single nucleotide polymorphisms (SNPs) in 5199 P. falciparum isolates from two Kenyan sites (Kilifi county and Rachuonyo South district) and one Gambian site (Kombo coastal districts) to determine the spatio-temporal extent of parasite mixing, and use Principal Component Analysis (PCA) and linear regression to examine the relationship between genetic relatedness and distance in space and time for parasite pairs. Results: Using 107, 177 and 82 SNPs that were successfully genotyped in 133, 1602, and 1034 parasite isolates from The Gambia, Kilifi and Rachuonyo South district, respectively, we show that there are no discrete geographically restricted parasite sub-populations, but instead we see a diffuse spatio-temporal structure to parasite genotypes.  Genetic relatedness of sample pairs is predicted by relatedness in space and time. Conclusions: Our findings suggest that targeted malaria control will benefit the surrounding community, but unfortunately also that emerging drug resistance will spread rapidly through the population.


2021 ◽  
Author(s):  
Hui Jiang ◽  
Gen Pan ◽  
Touming Liu ◽  
Li Chang ◽  
Siqi Huang ◽  
...  

Abstract Flax is an important oil and fibre crop grown in Northern Europe, Canada, India, and China. The development of molecular markers has accelerated the process of flax molecular breeding and has improved yield and quality. Presently, simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers in the whole genome have been developed for flax. However, the development of flax insertion/deletion (InDel) markers has not been reported. A total of 17,110 InDel markers were identified by comparing whole-genome re-sequencing data of two accessions (87-3 and 84-3) with the flax reference genome. The length of InDels ranged from 1–277 bp, with 1–15 bp accounting for the highest rate (95.55%). The most common InDels were in the form of single nucleotide (8840), dinucleotide (3700), and trinucleotide (1349), and chromosome 2 (1505) showed the highest number of InDels among flax chromosomes, while chromosome 10 (913) presented with the lowest number. From 17,110 InDel markers, 90 primers that were evenly distributed in the flax genome were selected. Thirty-two pairs of polymorphic primers were detected in two flax accessions, and the polymorphism rate was 40.70%. Furthermore, genetic diversity analysis, population structure and principal component analyse (PCA) divided 69 flax accessions into two categories, namely oilseed flax and fibre flax using 32 pairs of polymorphic primers. Additionally, correlation analysis showed that InDel-26 and InDel-81 were associated with oil content traits, and two candidate genes (lus10031535 and lus10025284) tightly linked to InDel-26 or InDel-81, might be involved in flax lipid biosynthesis and lipid metabolism. This study is the first to develop InDel markers based on re-sequencing in flax and clustered the markers into two well-separated groups for oil and fibre. The results demonstrated that InDel markers developed herein could be used for flax germplasm identification, genetic diversity analysis, and molecular marker-assisted breeding.


Genome ◽  
2018 ◽  
Vol 61 (4) ◽  
pp. 241-247 ◽  
Author(s):  
Luana S.F. Lins ◽  
Shawn Trojahn ◽  
Alexandra Sockell ◽  
Muh-Ching Yee ◽  
Andrey Tatarenkov ◽  
...  

The mangrove rivulus, Kryptolebias marmoratus, is one of only two self-fertilizing hermaphroditic fish species and inhabits mangrove forests. While selfing can be advantageous, it reduces heterozygosity and decreases genetic diversity. Studies using microsatellites found that there are variable levels of selfing among populations of K. marmoratus, but overall, there is a low rate of outcrossing and, therefore, low heterozygosity. In this study, we used whole-genome data to assess the levels of heterozygosity in different lineages of the mangrove rivulus and infer the phylogenetic relationships among those lineages. We sequenced whole genomes from 15 lineages that were completely homozygous at microsatellite loci and used single nucleotide polymorphisms (SNPs) to determine heterozygosity levels. More variation was uncovered than in studies using microsatellite data because of the resolution of full genome sequencing data. Moreover, missense polymorphisms were found most often in genes associated with immune function and reproduction. Inferred phylogenetic relationships suggest that lineages largely group by their geographic distribution. The use of whole-genome data provided further insight into genetic diversity in this unique species. Although this study was limited by the number of lineages that were available, these data suggest that there is previously undescribed variation within lineages of K. marmoratus that could have functional consequences and (or) inform us about the limits to selfing (e.g., genetic load, accumulation of deleterious mutations) and selection that might favor the maintenance of heterozygosity. These results highlight the need to sequence additional individuals within and among lineages.


2021 ◽  
Vol 17 (3) ◽  
Author(s):  
Xiao Wei ◽  
Fei Shen ◽  
Qiuping Zhang ◽  
Ning Liu ◽  
Yuping Zhang ◽  
...  

AbstractChinese plum (Prunus salicina L.), also known as Japanese plum, is gaining importance because of its extensive genetic diversity and nutritional attributes that are beneficial for human health. Single-nucleotide polymorphisms (SNPs) are the most abundant form of genomic polymorphisms and are widely used in population genetics research. In this study, we constructed high-quality SNPs through whole-genome resequencing of 67 Prunus accessions with a depth of ~20× to evaluate the genome-level diversity and population structure. Phylogenetic analysis, principal component analysis, and population structure profiling indicated that the 67 plum accessions could be classified into four groups corresponding to their origin location, the southern cultivar group (SCG), the northern cultivar group (NCG), the foreign cultivar group (FG), and the mixed cultivar group (MG). Some cultivars from South China clustered with the other three groups. The genetic diversity indices including private allele number, observed heterozygosity, expected heterozygosity, and the nucleotide diversity of the SCG were higher than those of the NCG. Gene flow from the SCG to FG was also detected. Based on the distribution of wild resources, we concluded that the domestication center of origin of the Chinese plum was southwestern China. This study also provided genetic variation features and the population structure of Chinese plum cultivars, laying a foundation for breeders to use diverse germplasm and allelic variants to improve Chinese plum varieties.


2017 ◽  
Vol 2 ◽  
pp. 10 ◽  
Author(s):  
Irene Omedo ◽  
Polycarp Mogeni ◽  
Teun Bousema ◽  
Kirk Rockett ◽  
Alfred Amambua-Ngwa ◽  
...  

Background: The first models of malaria transmission assumed a completely mixed and homogeneous population of parasites.  Recent models include spatial heterogeneity and variably mixed populations. However, there are few empiric estimates of parasite mixing with which to parametize such models. Methods: Here we genotype 276 single nucleotide polymorphisms (SNPs) in 5199 P. falciparum isolates from two Kenyan sites and one Gambian site to determine the spatio-temporal extent of parasite mixing, and use Principal Component Analysis (PCA) and linear regression to examine the relationship between genetic relatedness and relatedness in space and time for parasite pairs. Results: We show that there are no discrete geographically restricted parasite sub-populations, but instead we see a diffuse spatio-temporal structure to parasite genotypes.  Genetic relatedness of sample pairs is predicted by relatedness in space and time. Conclusions: Our findings suggest that targeted malaria control will benefit the surrounding community, but unfortunately also that emerging drug resistance will spread rapidly through the population.


2019 ◽  
Author(s):  
Jorge Mario Muñoz-Pérez ◽  
Gloria Patricia Cañas ◽  
Lorena López ◽  
Tatiana Arias

SummaryCoconut palms (Cocos nucifera) are a combination of wild admixed populations and perennial crops with a worldwide distribution. Here we develop single nucleotide polymorphisms (SNPs) along the coconut genome based on Genotyping by Sequencing (GBS) for at least four different commercially important and widely cultivated coconut varieties and hybrids growing in northern South America. We present a comprehensive catalog of approximately 27K SNPs to conduct genetic diversity, population structure and linkage disequilibrium analysis. A relatively fast LD decay for the Atlantic accessions within ~250Kb was observed in comparison to the Pacific accessions ~ 1500 Kb.The complete SNPs sampling showed a strong population structure at K = 2, separating accessions from the Pacific and Atlantic coasts as it has been found in previous studies. At higher K values, one non-admixed group was observed for the Atlantic while further substructures emerged for the Pacific accessions, where three non-admixed groups were found. Population structure analysis also showed a great degree of admixture between the Atlantic and Pacific populations, and SNPs of the Pacific non-admixed genetic groups were mostly introgressed into the Atlantic individuals but the contrary was rarely observed. The results of principal component analysis and Neighbor-Joining Hierarchical Clustering were consistent with the results from Structure and provided a measure of genetic relationships among individual genotypes. The Pacific group has a lower genetic diversity and a higher rate of inbreeding than the Atlantic group. These results suggest that the Pacific coconuts of Colombia belong to the pre-Columbian population found on the Pacific coast of Panama and Peru. If it had been introduced after Columbus (as in Mexico), genetic diversity would have been higher than on the Atlantic coast.


2020 ◽  
Author(s):  
Hengyou Zhang ◽  
He Jiang ◽  
Zhenbin Hu ◽  
Qijian Song ◽  
Yong-qiang Charles An

SummaryWith the advance of next-generation sequencing technologies, over 15 terabytes of raw soybean genome sequencing data were generated and made available in the public. To develop a consolidated, diverse, and user-friendly genomic resource to facilitate post-genomic research, we sequenced 91 highly diverse wild soybean genomes representing the entire US collection of wild soybean accessions to increase the genetic diversity of the sequenced genomes. Having integrated and analyzed the sequencing data with the public data, we identified and annotated 32 million single nucleotide polymorphisms (32mSNPs) with a resolution of 30 SNPs/kb and 12 non-synonymous SNPs/gene in 1,556 accessions (1.5K). Population structure analysis showed that the 1.5K accessions represent the genetic diversity of the 20,087 (20K) soybean accessions in the U.S. collection. Inclusion of wild soybean genomes significantly increased the genetic diversity and shorten linkage disequilibrium distance in the panel of soybean accessions. We identified a collection of paired accessions sharing the highest genomic identity between the 1.5K and 20K accessions as genomically “equivalent” accessions to maximize the use of the genome sequences. We demonstrated that the 32mSNPs in the 1.5K accessions can be effectively used for in-silico genotyping, discovering trait QTL, gene alleles/mutations, identifying germplasms containing beneficial allele and domestication selection of trait alleles. We made the 32mSNPs and 1.5K accessions with detailed annotation available at SoyBase and Ag Data Commons. The dataset could serve as a versatile resource to release the potential of the huge amount of genome sequencing data for a variety of postgenomic research.


Sign in / Sign up

Export Citation Format

Share Document