scholarly journals Pearl extract protects HaCaT cells from UV radiation-induced apoptosis through mitochondrial pathway regulation

2019 ◽  
Author(s):  
Zhixiong Chen ◽  
Jing Wang ◽  
Anquan Yang ◽  
Lihua Zhang ◽  
Yaojia Lu ◽  
...  

Abstract Background: Previous studies demonstrated that pearl extract (PE) promotes wound healing and skin whitening. However, whether PE can inhibit ultraviolet (UV) photodamage in HaCaT cells remains unclear. In this study, an in vitro photoaging cell model was established to observe the effect of PE on UV-induced damage and apoptosis of HaCaT cells. The aim was to provide a reference for future development of natural sunscreen agents. Results: PE concentrations of 0.1 and 1 μg/mL were considered as the most effective and safe concentrations. Compared to the control group, superoxide dismutase and glutathione peroxidase activities in the photoaging group were significantly reduced, while malondialdehyde and reactive oxygen species content, along with tumor necrosis factor-alpha (TNF-a) and interleukin (IL)-10 mRNA and protein levels were markedly increased. In contrast, Bcl-2 protein expression was significantly decreased, while caspase-3, caspase-9, and Bax protein expression levels were significantly increased. Compared to the photoaging group, HaCaT cell proliferation was significantly increased in the PE group. Both PE concentrations significantly increased superoxide dismutase and glutathione peroxidase activities in cells, reduced malondialdehyde and reactive oxygen species content, decreased TNF-a and IL-10 mRNA expression in cells, and reduced TNF-a and IL-10 protein levels in the supernatant. Additionally, Bcl-2 protein expression levels were significantly increased, while caspase-3, caspase-9, and Bax protein expression levels were significantly reduced by PE treatment. Conclusions: PE can inhibit UV-induced apoptosis by inhibiting mitochondria-mediated apoptosis and regulating TNF-a and IL-10 expression.

2020 ◽  
Author(s):  
Zhixiong Chen ◽  
jing wang ◽  
Anquan Yang ◽  
Lihua Zhang ◽  
Yaojia Lu ◽  
...  

Abstract Background: Previous studies have demonstrated that pearl extract (PE) promotes wound healing and skin whitening. However, it remains unclear whether PE can inhibit ultraviolet (UV)-photodamage in HaCaT cells. In this study, an in vitro photoaging cell model was established to observe the effect of PE on UV-induced damage and the apoptosis of HaCaT cells. The aim of this study was to provide a reference for the future development of natural sunscreens.Results: PE concentrations of 0.1 and 1 μg/mL were considered the most effective and safe concentrations. Compared to that in the control group, superoxide dismutase and glutathione peroxidase activity in the photoaging group was significantly reduced, whereas malondialdehyde and reactive oxygen species content, along with tumour necrosis factor-alpha (TNF-α) and interleukin (IL)-10 mRNA and protein levels, were markedly increased. In contrast, Bcl-2 protein expression was significantly decreased, whereas caspase-3, caspase-9, and Bax protein expression levels were significantly increased. Compared to that in the photoaging group, HaCaT cell proliferation was significantly increased in the PE group. Both PE concentrations significantly increased superoxide dismutase and glutathione peroxidase activity in cells, reduced malondialdehyde and reactive oxygen species content, decreased TNF-α and IL-10 mRNA expression in cells, and reduced TNF-α and IL-10 protein levels in the supernatant. Additionally, Bcl-2 protein expression levels were significantly increased, whereas caspase-3, caspase-9, and Bax protein expression levels were significantly reduced by PE treatment.Conclusions: PE can inhibit UV-induced apoptosis by inhibiting mitochondria-mediated apoptosis and regulating TNF-α and IL-10 expression.


2015 ◽  
Vol 37 (2) ◽  
pp. 116-119 ◽  
Author(s):  
T O Kochubei ◽  
O Y Maksymchuk ◽  
O O Piven ◽  
L L Lukash

Aim: To study the effects of total phytohemagglutinin (PHA) and its isolectins on cell death and apoptosis in human HEp-2 carcinoma cells and to analyze the possible molecular mechanisms of lectin induced apoptosis. Materials and Methods: The commercial preparation of the kidney beans (Phaseolus vulgaris) lectins and HEp-2 cells were used. Apoptosis index was determined using acridine orange and ethidium bromide staining. The expression levels of apoptosis mediator cleaved caspase-3 and proapoptotic Bax protein were studied by Western blot analysis. The gene expression levels were analyzed by qPCR. Results: PHA and its isolectins induced apoptosis in HEp-2 cells accompanied by the increased expression of caspase-3 cleaved form, with PHA-E being the most effective. The treatment of HEp-2 cells with PHA or its isolectins resulted in a marked increase of Bax on both mRNA and protein levels. Conclusions: PHA and its isolectins were shown to induce the apoptosis in human HEp-2 carcinoma cells via increasing proapoptotic protein Bax and activating caspases-3.


2001 ◽  
Vol 280 (1) ◽  
pp. L10-L17 ◽  
Author(s):  
Han-Ming Shen ◽  
Zhuo Zhang ◽  
Qi-Feng Zhang ◽  
Choon-Nam Ong

Alveolar macrophages (AMs) are the principal target cells of silica and occupy a key position in the pathogenesis of silica-related diseases. Silica has been found to induce apoptosis in AMs, whereas its underlying mechanisms involving the initiation and execution of apoptosis are largely unknown. The main objective of the present study was to examine the form of cell death caused by silica and the mechanisms involved. Silica-induced apoptosis in AMs was evaluated by terminal deoxynucleotidyltransferase-mediated dUTP nick end-labeling assay and cell cycle/DNA content analysis. The elevated level of reactive oxygen species (ROS), caspase-9 and caspase-3 activation, and poly(ADP-ribose) polymerase (PARP) cleavage in silica-treated AMs were also determined. The results showed that there was a temporal pattern of apoptotic events in silica-treated AMs, starting with ROS formation and followed by caspase-9 and caspase-3 activation, PARP cleavage, and DNA fragmentation. Silica-induced apoptosis was significantly attenuated by a caspase-3 inhibitor, N-acetyl-Asp-Glu-Val-Asp aldehyde, and ebselen, a potent antioxidant. These findings suggest that apoptosis is an important form of cell death caused by silica exposure in which the elevated ROS level that results from silica exposure may act as an initiator, leading to caspase activation and PARP cleavage to execute the apoptotic process.


2020 ◽  
Vol 19 (3) ◽  
pp. 519-524
Author(s):  
Haibin Yu ◽  
Haojie Zhang ◽  
Yan Cheng ◽  
Xian’en Fa ◽  
Fangtao Zhu ◽  
...  

Purpose: To study the effect of Jun N-terminal kinase (JNK) signaling pathway on hepatocyte apoptosis in vivo and in vitro, and to elucidate the mechanism of action. Methods: TdT-mediated dUTP Nick-End Labeling (TUNEL) method was used to determine apoptosis in control and cardiopulmonary bypass (CPB) groups at 0, 3 and 6 hours after rat surgery. The expressions of JNK and p-c-Jun in liver tissues at 0, 3 and 6 h after surgery, and the levels of p-c-Jun, Bcl-2 and Bim following overexpression of JNK, were determined using Western blot assay. Human liver cell line HL-7702 was cultured and transfected with over-expressed JNK plasmid and empty plasmid. Proliferation of HL-7702 cells after JNK over-expression was assessed by Cell Counting Kit-8 (CCK-8), while quantitative real-time polymerase chain reaction (RT-qPCR) was employed to evaluate mRNA expression levels of caspase-3 and caspase-9 mRNA after JNK over-expression. Apoptosis of the cells was determined by flow cytometry (FC) after JNK over-expression. Results: FC results showed that the number of apoptotic hepatocytes increased after JNK overexpression in hepatocytes while TUNEL assay results demonstrated that hepatocyte apoptosis increased in CPB group, when compared to control group; furthermore, the number of apoptotic cells gradually increased within 6 h after surgery. The expressions of JNK and p-c-Jun were higher in CPB group than in control group, and increased gradually in both groups within 6 h after surgery. Overexpression of JNK decreased the proliferation of hepatocytes, and also lowered protein expression levels of p-c-Jun and Bim; on the other hand, the protein expression levels of Bcl-2 fell, while mRNA expression levels of caspase-3 and caspase-9 mRNA increased. Conclusion: JNK pathway promotes hepatocyte apoptosis after cardiopulmonary bypass by inhibiting Bcl-2 pathway and promoting the expressions of Bim caspase-3 and caspase-9. Keywords: Cardiopulmonary bypass, Apoptosis, JNK pathway, Bim, caspase-3 and caspase-9


2000 ◽  
Vol 278 (6) ◽  
pp. G839-G846 ◽  
Author(s):  
Barbara M. Alderman ◽  
Gregory A. Cook ◽  
Mary Familari ◽  
Neville D. Yeomans ◽  
Andrew S. Giraud

Adaptation of the gastric mucosa to nonsteroidal anti-inflammatory drug-induced injury is a well-documented phenomenon, but the mechanisms are not known. We investigated whether changes in stress protein expression and apoptosis play roles in adaptation of rat stomach to aspirin. RT-PCR and Western blotting techniques were used to analyze mRNA and protein expression of HSP72 and HSP90 and cleavage of caspase 3 protein. Apoptosis was detected by the TUNEL method and quantified. HSP72 mRNA and protein expression was unchanged in adapted mucosa, whereas HSP90 mRNA and protein levels decreased. Caspase 3 protein was activated, and the number of apoptotic cells increased in mucosa after one aspirin dose. However, in adapted mucosa after aspirin, activated caspase 3 and the number of apoptotic cells had returned to basal levels. Induction of the stress response was found not to be a mechanism of mucosal adaptation against multiple doses of aspirin. Our results lead us to propose instead that resistance to aspirin-induced apoptosis plays a role in the protective phenomenon of adaptation.


2020 ◽  
Vol 98 (6) ◽  
pp. 669-675
Author(s):  
Yu-Ping Gong ◽  
Ya-Wei Zhang ◽  
Xiao-Qing Su ◽  
Hai-Bo Gao

The study investigated the expression of long noncoding RNA (lncRNA) MALAT1 in high glucose (HG)-induced human vascular endothelial cells (HUVECs) and the role of MALAT1 in the apoptosis of HG-induced HUVECs. The HUVECs were cultured and induced with 25 mmol/L HG. After that, the HUVECs were transfected with MALAT1 siRNA. The expression levels of MALAT1 were detected with qPCR, whereas the expression levels of Bax, Bcl-2, cleaved-caspase-3, cleaved-caspase-9, p-65, and p-p65 were detected using Western blot. The roles of MALAT1 in cell activities, including apoptosis, were evaluated using the CCK-8 assay, TUNEL staining, and flow cytometry. The expression levels of inflammatory factors (TNF-α and IL-6) were measured using ELISA. The expression levels of MALAT1, TNF-α, and IL-6 in HUVECs were increased in the HG environment; however, when MALAT1 was silenced in the HUVECs, cell proliferation increased significantly, the expression levels of TNF-α, IL-6, Bax, cleaved-caspase-3, and cleaved-caspase-9 decreased, and the rate of apoptosis also decreased. Silencing MALAT1 inhibited the expression of p-p65 in HG-induced HUVECs. In conclusion, our study demonstrated that MALAT1 is upregulated in HG-induced HUVECs, and inhibition of MALAT1 inhibits HG-induced apoptosis and inflammation in HUVECs by suppression of the NF-κB signaling pathway.


Marine Drugs ◽  
2021 ◽  
Vol 19 (11) ◽  
pp. 626
Author(s):  
Zhaowan Zheng ◽  
Zhenbang Xiao ◽  
Yuan-Lin He ◽  
Yanfei Tang ◽  
Lefan Li ◽  
...  

Marine microalgae can be used as sustainable protein sources in many fields with positive effects on human and animal health. DAPTMGY is a heptapeptide isolated from Isochrysis zhanjiangensis which is a microalga. In this study, we evaluated its anti-photoaging properties and mechanism of action in human immortalized keratinocytes cells (HaCaT). The results showed that DAPTMGY scavenged reactive oxygen species (ROS) and increase the level of endogenous antioxidants. In addition, through the exploration of its mechanism, it was determined that DAPIMGY exerted anti-photoaging effects. Specifically, the heptapeptide inhibits UVB-induced apoptosis through down-regulation of p53, caspase-8, caspase-3 and Bax and up-regulation of Bcl-2. Thus, DAPTMGY, isolated from I. zhanjiangensis, exhibits protective effects against UVB-induced damage.


2020 ◽  
Vol 21 (16) ◽  
pp. 5720
Author(s):  
Hui-Chun Yu ◽  
Chien-Hsueh Tung ◽  
Kuang-Yung Huang ◽  
Hsien-Bin Huang ◽  
Ming-Chi Lu

Objective: The study aims to investigate the functional roles of peptidylarginine deiminase 2 (PADI2) in macrophages. Methods: The clustered regularly interspaced short palindromic repeats (CRISPR)–CRISPR-associated protein-9 nuclease (Cas9) system was used to knockout PADI2 in U937 cells. U937 cells were introduced to differentiate macrophages and were stimulated with lipopolysaccharides (LPS). The protein expression of PADI2, PADI4, and citrullinated proteins were analyzed by Western blotting. The mRNA and protein levels of interleukin 1 beta (IL-1β), IL-6, and tumor necrosis factor-alpha (TNF-α) were analyzed using RT-PCR and ELISA, respectively. Cell apoptosis was analyzed using flow cytometry. Cell adhesion assay was performed using a commercially available fibrinogen-coated plate. Results: PADI2 knockout could markedly suppress the PADI2 protein expression, but not the PADI4 protein expression. PADI2 knockout decreased the protein levels of citrullinated nuclear factor κB (NF-κB) p65, but not those of citrullinated histone 3, resulting in the decreased mRNA expression levels of IL-1β and TNF-α in the U937 cells and IL-1β and IL-6 in the differentiated macrophages and the macrophages stimulated with LPS. The cytokines levels of IL-1β, IL-6, and TNF-α were all dramatically decreased in the PADI2 knockout group compared with in the controls. PADI2 knockout prevented macrophages apoptosis via the decreased caspase-3, caspase-2, and caspase-9 activation. PADI2 knockout also impaired macrophages adhesion capacity through the decreased protein levels of focal adhesion kinase (FAK), phospho-FAK, paxillin, phospho-paxillin, and p21-activated kinase 1. Conclusion: This study showed that PADI2 could promote IL-1β, IL-6, and TNF-α production in macrophages, promote macrophage apoptosis through caspase-3, caspase-2, and caspase-9 activation and enhance cell adhesion via FAK, paxillin, and PAK1. Therefore, targeting PADI2 could be used as a novel strategy for controlling inflammation caused by macrophages.


2021 ◽  
Author(s):  
Zhijun Liu ◽  
Shaojin Liu ◽  
Weipeng Zheng ◽  
Zhihao Liao ◽  
Sheng Chen ◽  
...  

Abstract Background Tendinopathy is a chronic injury disease caused by repeated traction. It is characterized by exercise-related pain, increased local tendon sensitivity, and imaging changes in the tendon. Rotator cuff injury is one of the typical tendinopathy. Tendon-derived stem cells (TDSC) play a vital role in the development of tendinopathy. Our previous studies have found that reactive oxygen species increase after rotator cuff injury and the oxidative stress response is strengthened, but whether oxidative stress induces TDSC autophagy to promote tendon bone healing is not clear. Methods First, we collected the injured and normal tendon tissues of patients with rotator cuff injury, detected the levels of reactive oxygen species (ROS) and superoxide anion (SOD) in the tissues, detected Beclin1, mTOR gene expression by qPCR, and WB (Western blotting). Beclin1, p-mTOR/mTOR protein expression.Then, we extracted human tendon stem cells (TDSC) from tendon tissue, infected TDSC with recombinant lentivirus pLKO.1-shBeclin1, and verified the expression of Beclin1 by qPCR and WB.Finally, H2O2 and 3-MA were used to intervene TSCs. CCK8 was used to detect the proliferation ability of H2O2 on human TSCs; autophagy staining (MDC), autophagy-lysosome staining (Lyso-Tracker Red) and transmission electron microscopy were used to observe autophagy. Immunofluorescence staining detects the expression of autophagy factor LC3A/B; DCFH-DA detects cellular reactive oxygen species ROS level, Annexin V/PI detects cell apoptosis; WB detects Beclin1, mTOR, p-mTOR (Ser2448), LC3A/B, cleaved caspase-3 protein expression. Results In this study, it was found that the expression levels of ROS and Beclin1 in the damaged rotator cuff tissue were higher, while the expression levels of SOD and mTOR were lower. After the recombinant lentivirus pLKO.1-shBeclin1 was infected with TDSC, the expression of Beclin1 decreased. After treating TDSCs with H2O2 and 3-MA, it was found that H2O2 caused an increase in reactive oxygen species ROS content, autophagy levels, and LC3A/B expression in TDSCs, and an increase in Beclin1, mTOR, LC3A/B, and cleaved caspase-3 protein expression. Lead to a decrease in the level of apoptosis. Conclusion Under the mutual regulation of Beclin1-mTOR, oxidative stress induces the occurrence of autophagy in TSCs, and autophagy may protect TSCs from oxidative stress by reducing the accumulation of ROS.


Sign in / Sign up

Export Citation Format

Share Document