scholarly journals Genomic and evolutionary features of two AHPND positive Vibrio parahaemolyticus strains isolated from shrimp (Penaeus monodon) of south-west Bangladesh

2019 ◽  
Author(s):  
Shawon Ahmmed ◽  
Md. Abdullah-Al-Kamran Khan ◽  
Md. Mostavi Enan Eshik ◽  
Nusrat Jahan Punom ◽  
Abul B.M.M.K. Islam ◽  
...  

Abstract Background Due to its rapid lethal effect in the early stage of shrimp, acute hepatopancreatic necrosis disease (AHPND) causing great economic losses, since it first outbreak in southeast China in 2009. Vibrio parahaemolyticus , carrying the pir A and pir B toxin genes is known to cause AHPND in shrimp. The overall objective of this study was to sequence whole genome of AHPND positive V. parahaemolyticus strains isolated from shrimp ( Peneaus monodon ) of south-west region of Bangladesh in 2016 and 2017 and characterize the genomic features and emergence pattern of this marine pathogen. Results Two targeted AHPND positive V. parahaemolyticus strains were confirmed using PCR with 16S rRNA, ldh , AP3 and AP4 primers. The assembled genomes of strain MSR16 and MSR17 were comprised of total 5,393,740 bp and 5,241,592 bp, respectively. From annotation, several virulence genes involved in chemotaxis and motility, EPS type II secretion system, Type three secretion system-1 (TTSS-1) and its secreted effectors, thermolabile hemolysin were found in both strains. Importantly, the ~69 kb plasmid was identified in both MSR16 and MSR17 strains containing the two toxin genes pir A and pir B. Antibiotic resistance genes were predicted against β-lactam, fluoroquinolone, tetracycline, macrolide and cephalosporin groups in both MSR16 and MSR17 strains. Conclusions The findings of this research may facilitate the tracking of pathogenic and/or antibiotic resistance V. parahaemolyticus isolates between production sites, and the identification of candidate strains for production of vaccines as an aid to control of this devastating disease. Also, the emergence pattern of this pathogen can be highlighted to determine the characteristic differences of other strains found all over the world.

2019 ◽  
Author(s):  
Shawon Ahmmed ◽  
Md. Abdullah-Al-Kamran Khan ◽  
Md. Mostavi Enan Eshik ◽  
Nusrat Jahan Punom ◽  
Abul B.M.M.K. Islam ◽  
...  

Abstract Background Due to its rapid lethal effect in the early stage of shrimp, acute hepatopancreatic necrosis disease (AHPND) causing great economic losses, since its first outbreak in southeast China in 2009. Vibrio parahaemolyticus , carrying the pir A and pir B toxin genes is known to cause AHPND in shrimp. The overall objective of this study was to sequence the whole genome of AHPND positive V. parahaemolyticus strains isolated from shrimp ( Peneaus monodon ) of south-west region of Bangladesh in 2016 and 2017 and characterize the genomic features and emergence pattern of this marine pathogen. Results Two targeted AHPND positive V. parahaemolyticus strains were confirmed using PCR with 16S rRNA, ldh , AP3 and AP4 primers. The assembled genomes of strain MSR16 and MSR17 were comprised of a total of 5,393,740 bp and 5,241,592 bp, respectively. From annotation, several virulence genes involved in chemotaxis and motility, EPS type II secretion system, Type III secretion system-1 (T3SS-1) and its secreted effectors, thermolabile hemolysin were found in both strains. Importantly, the ~69 kb plasmid was identified in both MSR16 and MSR17 strains containing the two toxin genes pir A and pir B. Antibiotic resistance genes were predicted against β-lactam, fluoroquinolone, tetracycline and macrolide groups in both MSR16 and MSR17 strains. Conclusions The findings of this research may facilitate the tracking of pathogenic and/or antibiotic-resistant V. parahaemolyticus isolates between production sites, and the identification of candidate strains for the production of vaccines as an aid to control of this devastating disease. Also, the emergence pattern of this pathogen can be highlighted to determine the characteristic differences of other strains found all over the world.


2019 ◽  
Author(s):  
Shawon Ahmmed ◽  
Md. Abdullah-Al-Kamran Khan ◽  
Md. Mostavi Enan Eshik ◽  
Nusrat Jahan Punom ◽  
Abul B.M.M.K. Islam ◽  
...  

Abstract Background Due to its rapid lethal effect in the early stage of shrimp, acute hepatopancreatic necrosis disease (AHPND) causing great economic losses, since its first outbreak in southeast China in 2009. Vibrio parahaemolyticus, carrying the pirA and pirB toxin genes is known to cause AHPND in shrimp. The overall objective of this study was to sequence the whole genome of AHPND positive V. parahaemolyticus strains isolated from shrimp (Peneaus monodon) of south-west region of Bangladesh in 2016 and 2017 and characterize the genomic features and emergence pattern of this marine pathogen. Results Two targeted AHPND positive V. parahaemolyticus strains were confirmed using PCR with 16S rRNA, ldh, AP3 and AP4 primers. The assembled genomes of strain MSR16 and MSR17 were comprised of a total of 5,393,740 bp and 5,241,592 bp, respectively. From annotation, several virulence genes involved in chemotaxis and motility, EPS type II secretion system, Type III secretion system-1 (T3SS-1) and its secreted effectors, thermolabile hemolysin were found in both strains. Importantly, the ~69 kb plasmid was identified in both MSR16 and MSR17 strains containing the two toxin genes pirA and pirB. Antibiotic resistance genes were predicted against β-lactam, fluoroquinolone, tetracycline and macrolide groups in both MSR16 and MSR17 strains. Conclusions The findings of this research may facilitate the tracking of pathogenic and/or antibiotic-resistant V. parahaemolyticus isolates between production sites, and the identification of candidate strains for the production of vaccines as an aid to control of this devastating disease. Also, the emergence pattern of this pathogen can be highlighted to determine the characteristic differences of other strains found all over the world.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Shawon Ahmmed ◽  
Md. Abdullah-Al-Kamran Khan ◽  
Md. Mostavi Enan Eshik ◽  
Nusrat Jahan Punom ◽  
Abul Bashar Mir Md. Khademul Islam ◽  
...  

Abstract Background Due to its rapid lethal effect in the early development stage of shrimp, acute hepatopancreatic necrosis disease (AHPND) has been causing great economic losses, since its first outbreak in southeast China in 2009. Vibrio parahaemolyticus, carrying the pirA and pirB toxin genes is known to cause AHPND in shrimp. The overall objective of this study was to sequence the whole genome of AHPND positive V. parahaemolyticus strains isolated from shrimp (Peneaus monodon) of the south-west region of Bangladesh in 2016 and 2017 and characterize the genomic features and emergence pattern of this marine pathogen. Results Two targeted AHPND positive V. parahaemolyticus strains were confirmed using PCR with 16S rRNA, ldh, AP3 and AP4 primers. The assembled genomes of strain MSR16 and MSR17 were comprised of a total of 5,393,740 bp and 5,241,592 bp, respectively. From annotation, several virulence genes involved in chemotaxis and motility, EPS type II secretion system, Type III secretion system-1 (T3SS-1) and its secreted effectors, thermolabile hemolysin were found in both strains. Importantly, the ~ 69 kb plasmid was identified in both MSR16 and MSR17 strains containing the two toxin genes pirA and pirB. Antibiotic resistance genes were predicted against β-lactam, fluoroquinolone, tetracycline and macrolide groups in both MSR16 and MSR17 strains. Conclusions The findings of this research may facilitate the tracking of pathogenic and/or antibiotic-resistant V. parahaemolyticus isolates between production sites, and the identification of candidate strains for the production of vaccines as an aid to control of this devastating disease. Also, the emergence pattern of this pathogen can be highlighted to determine the characteristic differences of other strains found all over the world.


2019 ◽  
Author(s):  
Shawon Ahmmed ◽  
Md. Abdullah-Al-Kamran Khan ◽  
Md. Mostavi Enan Eshik ◽  
Nusrat Jahan Punom ◽  
Abul B.M.M.K. Islam ◽  
...  

Abstract Background Due to its rapid lethal effect in the early development stage of shrimp, acute hepatopancreatic necrosis disease (AHPND) has been causing great economic losses, since its first outbreak in southeast China in 2009. Vibrio parahaemolyticus, carrying the pirA and pirB toxin genes is known to cause AHPND in shrimp. The overall objective of this study was to sequence the whole genome of AHPND positive V. parahaemolyticus strains isolated from shrimp (Peneaus monodon) of the south-west region of Bangladesh in 2016 and 2017 and characterize the genomic features and emergence pattern of this marine pathogen. Results Two targeted AHPND positive V. parahaemolyticus strains were confirmed using PCR with 16S rRNA, ldh, AP3 and AP4 primers. The assembled genomes of strain MSR16 and MSR17 were comprised of a total of 5,393,740 bp and 5,241,592 bp, respectively. From annotation, several virulence genes involved in chemotaxis and motility, EPS type II secretion system, Type III secretion system-1 (T3SS-1) and its secreted effectors, thermolabile hemolysin were found in both strains. Importantly, the ~69 kb plasmid was identified in both MSR16 and MSR17 strains containing the two toxin genes pirA and pirB. Antibiotic resistance genes were predicted against β-lactam, fluoroquinolone, tetracycline and macrolide groups in both MSR16 and MSR17 strains. Conclusions The findings of this research may facilitate the tracking of pathogenic and/or antibiotic-resistant V. parahaemolyticus isolates between production sites, and the identification of candidate strains for the production of vaccines as an aid to control of this devastating disease. Also, the emergence pattern of this pathogen can be highlighted to determine the characteristic differences of other strains found all over the world.


2018 ◽  
Vol 7 (11) ◽  
Author(s):  
Sridevi Devadas ◽  
Subha Bhassu ◽  
Tze Chiew Christie Soo ◽  
Fatimah M. Yusoff ◽  
Mohamed Shariff

We sequenced the genome of Vibrio parahaemolyticus strain ST17.P5-S1, isolated from Penaeus vannamei cultured in the east coast of Peninsular Malaysia. The strain contains several antibiotic resistance genes and a plasmid encoding the Photorhabdus insect-related (Pir) toxin-like genes, pirAvp and pirBvp, associated with acute hepatopancreatic necrosis disease (AHPND).


2021 ◽  
Author(s):  
Thi Thu Hang Pham ◽  
Khoa Dinh Hoang Dang ◽  
Emmanuelle Rohrbach ◽  
Florian Breider ◽  
Pierre Rossi

Aquaculture activities are steadily expanding in Vietnam, covering an estimated 700,000 ha, with 89% of these culture ponds located in the Mekong Delta. Since 2009, large-scale bacterial epidemics have spread in response to this intensive cultivation. Antibiotics, even those considered as a last resort, have only partially mitigated this problem. In turn, the side effects of the massive use of these chemicals include the appearance of mobile genetic elements associated with antibiotic resistance genes (ARGs). The large-scale emergence of a diverse bacterial resistome, along with severe economic losses, has posed significant health risks to local residents. In this study, the seasonal and spatial distributions of the class I integrase (CL1) intl1 and the ARGs sul2 (sulfonamide), BLA-oxa1 (β-lactams), and ermB (erythromycin) were quantified from water and sediment samples collected during two consecutive seasons along the Vam Co River and its tributary (Long An province, Vietnam). The results showed that CL1 was present in all river compartments, reaching 2.98×104 copies/mL and 1.07×106 copies/g of sediment, respectively. The highest relative copy abundances to the 16S rDNA gene were measured in water samples, with up to 3.02% for BLA-oxa1, followed by sul2 (1.16%) and ermB (0.46%). Strong seasonal (dry season vs. rainy season) and spatial patterns were recorded for all resistance genes. Higher amounts of ARGs in river water could be associated with higher antibiotic use during the rainy season. In contrast, higher amounts of ARGs were recorded in river sediments during the dry season, making this habitat a potential reservoir of transient genes. Finally, the observations made in this study allowed us to clarify the environmental and anthropogenic influences that may favor the dispersal and persistence of ARGS in this riverine ecosystem.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Dan Gu ◽  
Yibei Zhang ◽  
Qiyao Wang ◽  
Xiaohui Zhou

AbstractVibrio parahaemolyticus is the leading cause of seafood-borne diarrheal diseases. Experimental overproduction of a type 3 secretion system (T3SS1) in this pathogen leads to decreased intestinal colonization, which suggests that T3SS1 repression is required for maximal virulence. However, the mechanisms by which T3SS1 is repressed in vivo are unclear. Here, we show that host-derived nitrite modifies the activity of a bacterial histidine kinase and mediates T3SS1 repression. More specifically, nitrite activates histidine kinase sensor VbrK through S-nitrosylation on cysteine 86, which results in downregulation of the entire T3SS1 operon through repression of its positive regulator exsC. Replacement of cysteine 86 with a serine (VbrK C86S mutant) leads to increased expression of inflammatory cytokines in infected Caco-2 cells. In an infant rabbit model of infection, the VbrK C86S mutant induces a stronger inflammatory response at the early stage of infection, and displays reduced intestinal colonization and virulence at the later stage of infection, in comparison with the parent strain. Our results indicate that the pathogen V. parahaemolyticus perceives nitrite as a host-derived signal and responds by downregulating a proinflammatory factor (T3SS1), thus enhancing intestinal colonization and virulence.


2018 ◽  
Vol 27 (1) ◽  
pp. 57-68 ◽  
Author(s):  
Md Mostavi Enan Eshik ◽  
Nusrat Jahan Punom ◽  
Mst Khadiza Begum ◽  
Tahsin Khan ◽  
Mihir Lal Saha ◽  
...  

Acute hepatopancreatic necrosis disease (AHPND) is an emerging shrimp disease caused by strains of Vibrio parahaemolyticus containing a unique virulent plasmid, responsible for substantial economic losses since 2009; caused up to 100% mortality in farmed shrimp Penaeus monodon. The purpose of this study was to isolate and identify the pathogenic strain of V. parahaemolyticus causing AHPND in cultured shrimp (Penaeus monodon) using classical and molecular techniques. Samples were collected from three different locations of south-west shrimp farming regions of Bangladesh viz. Sadar Upazilla of Satkhira; Mongla and Morrelganj under Bagerhat district. In this study, three selective media were used for primary isolation of V. parahaemolyticus. Among 46 primary isolates, 18 representative isolates were checked for the species-specific detection of V. parahaemolyticus using ldh primers and all of them were found to be positive. 16S rRNA gene sequencing were used to further confirm the isolates as V. parahaemolyticus. tdh primer was used to check human pathogenicity but all 18 isolates showed negative result. The isolates were further characterized to check their AHPND positivity using AP3 and AP4 primers. Ten isolates showed positive results for AP3 (55.56%) and 9 showed positive results for AP4 (50%) which indicated that the isolates were AHPND positive. This study also reported that all AHPND positive strains were resistant to the antibiotic gentamycin but sensitive to chloramphenicol, nalidixic acid, nitrofurantoin and tetracycline. The findings of this study will help the shrimp farmers and policy makers to take proper biosecurity measures to protect shrimps from AHPND and thereby sustain the shrimp production in Bangladesh. Dhaka Univ. J. Biol. Sci. 27(1): 57-68, 2018 (January)


Molecules ◽  
2019 ◽  
Vol 24 (19) ◽  
pp. 3430 ◽  
Author(s):  
Hiroshi Ogawara

Antibiotic resistance poses a tremendous threat to human health. To overcome this problem, it is essential to know the mechanism of antibiotic resistance in antibiotic-producing and pathogenic bacteria. This paper deals with this problem from four points of view. First, the antibiotic resistance genes in producers are discussed related to their biosynthesis. Most resistance genes are present within the biosynthetic gene clusters, but some genes such as paromomycin acetyltransferases are located far outside the gene cluster. Second, when the antibiotic resistance genes in pathogens are compared with those in the producers, resistance mechanisms have dependency on antibiotic classes, and, in addition, new types of resistance mechanisms such as Eis aminoglycoside acetyltransferase and self-sacrifice proteins in enediyne antibiotics emerge in pathogens. Third, the relationships of the resistance genes between producers and pathogens are reevaluated at their amino acid sequence as well as nucleotide sequence levels. Pathogenic bacteria possess other resistance mechanisms than those in antibiotic producers. In addition, resistance mechanisms are little different between early stage of antibiotic use and the present time, e.g., β-lactam resistance in Staphylococcus aureus. Lastly, guanine + cytosine (GC) barrier in gene transfer to pathogenic bacteria is considered. Now, the resistance genes constitute resistome composed of complicated mixture from divergent environments.


Sign in / Sign up

Export Citation Format

Share Document