scholarly journals Hypoxic hepatocellular carcinoma cells acquire arsenic trioxide resistance through upregulating HIF-1α expression

2020 ◽  
Author(s):  
Yaoting Chen ◽  
Huiqing Li ◽  
Dong Chen ◽  
Xiongying Jiang ◽  
Weidong Wang ◽  
...  

Abstract Background : Although arsenic trioxide (ATO) is used in the treatment of advanced hepatocellular carcinoma (HCC) in clinical trials, it is not satisfactory in terms of improving HCC patients’ overall survival. Intratumoral hypoxia and overexpression of hypoxia-inducible-1α (HIF-1α) may result in ATO-resistance and tumor progression. We investigated the mechanisms involving HIF-1α expression and acquired ATO chemoresistance in HCC cells and mice. Methods: The therapeutic effects of ATO in normoxic and hypoxic HCC cells were assessed using cell viability and apoptosis assays in vitro and a xenograft model in vivo . mRNA and protein expression of HIF-1α, P-glycoprotein, and VEGF were measured by qRT-PCR and western blotting. HIF-1α inhibition was performed to investigate the mechanism of ATO-resistance. VEGF secretion was tested using ELISA and tube-formation assays. Results : Compared to normoxic cells, hypoxic HCC cells were more resistant to ATO, with higher IC 50 values and less apoptosis, and upregulated HIF-1α protein expression, accompanied with the enhancement of P-glycoprotein and VEGF synthesis after ATO treatment. VEGF secretion was elevated in the supernatant of ATO-treated HCC cells, and this change can potentiate angiogenesis in vitro . HIF-1α inhibition attenuated ATO-resistance and angiogenesis, and promoted the anticancer effects of ATO both in vitro and in vivo by downregulating therapy-induced P-glycoprotein and VEGF overexpression. Conclusions : Hypoxic HCC cells acquire ATO resistance by upregulating HIF-1α levels; thus, combining ATO with a HIF-1α-targeting agent may lead to enhanced antitumor effects in HCC.

2020 ◽  
Author(s):  
Yaoting Chen ◽  
Huiqing Li ◽  
Dong Chen ◽  
Xiongying Jiang ◽  
Weidong Wang ◽  
...  

Abstract Background : Although arsenic trioxide (ATO) is used in the treatment of advanced hepatocellular carcinoma (HCC) in clinical trials, it is not satisfactory in terms of improving HCC patients’ overall survival. Intratumoral hypoxia and overexpression of hypoxia-inducible-1α (HIF-1α) may result in ATO-resistance and tumor progression. We investigated the mechanisms involving HIF-1α expression and acquired ATO chemoresistance in HCC cells and mice. Methods: The therapeutic effects of ATO in normoxic and hypoxic HCC cells were assessed using cell viability and apoptosis assays in vitro and a xenograft model in vivo . mRNA and protein expression of HIF-1α, P-glycoprotein, and VEGF were measured by qRT-PCR and western blotting. HIF-1α inhibition was performed to investigate the mechanism of ATO-resistance. VEGF secretion was tested using ELISA and tube-formation assays. Results : Compared to normoxic cells, hypoxic HCC cells were more resistant to ATO, with higher IC 50 values and less apoptosis, and upregulated HIF-1α protein expression, accompanied with the enhancement of P-glycoprotein and VEGF synthesis after ATO treatment. VEGF secretion was elevated in the supernatant of ATO-treated HCC cells, and this change can potentiate angiogenesis in vitro . HIF-1α inhibition attenuated ATO-resistance and angiogenesis, and promoted the anticancer effects of ATO both in vitro and in vivo by downregulating therapy-induced P-glycoprotein and VEGF overexpression. Conclusions : Hypoxic HCC cells acquire ATO resistance by upregulating HIF-1α levels; thus, combining ATO with a HIF-1α-targeting agent may lead to enhanced antitumor effects in HCC.


2019 ◽  
Author(s):  
Yaoting Chen ◽  
Huiqing Li ◽  
Dong Chen ◽  
Xiongying Jiang ◽  
Weidong Wang ◽  
...  

Abstract Background: Although arsenic trioxide (ATO) is used in treatment of advanced hepatocellular carcinoma (HCC) in clinical trials, it is not yet satisfied in improving HCC patients’ overall survival. Intratumoral hypoxia and overexpression of hypoxia-inducible factor-1α (HIF-1α) may result in ATO-resistance and tumor progression. We investigated the mechanisms between HIF-1α expression and acquired ATO-chemoresistance in HCC cells and in mice. Methods: Therapeutic effects of ATO in normoxic and hypoxic HCC cells were assessed using cell viability and apoptosis assays in vitro and xenografts model. mRNA and protein expression of HIF-1α, P-glycoprotein, and VEGF were measured by qRT-PCR and western blotting. HIF-1α inhibition was performed to investigate the mechanism of ATO-resistance. VEGF secretion was tested using ELISA and tube-formation assay. Results: Hypoxic HCC cells showed more resistance to ATO, with higher IC50 values and less apoptosis, than normoxic cells and upregulated HIF-1α protein expression, accompanied with the enhancement of P-glycoprotein and VEGF synthesis after ATO treatment. VEGF secretion was elevated in ATO-treated supernatant to potentiate angiogenesis in vitro. HIF-1α inhibition attenuated ATO-resistance and angiogenesis, and promoted the anticancer effects of ATO both in vitro and in vivo by downregulating therapy-induced P-glycoprotein and VEGF overexpression. Conclusions: Hypoxic HCC cells acquire ATO-resistance by upregulating HIF-1α levels; thus ATO combined with targeting HIF-1α levels may lead to the enhanced antitumor effects in HCC. Keywords: hepatocellular carcinoma, arsenic trioxide, drug resistance, HIF-1α, targeted therapy


2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Junjie Xu ◽  
Lin Ji ◽  
Yuelong Liang ◽  
Zhe Wan ◽  
Wei Zheng ◽  
...  

AbstractSorafenib is the first-line chemotherapeutic therapy for advanced hepatocellular carcinoma (HCC). However, sorafenib resistance significantly limits its therapeutic efficacy, and the mechanisms underlying resistance have not been fully clarified. Here we report that a circular RNA, circRNA-SORE (a circular RNA upregulated in sorafenib-resistant HCC cells), plays a significant role in sorafenib resistance in HCC. We found that circRNA-SORE is upregulated in sorafenib-resistant HCC cells and depletion of circRNA-SORE substantially increases the cell-killing ability of sorafenib. Further studies revealed that circRNA-SORE binds the master oncogenic protein YBX1 in the cytoplasm, which prevents YBX1 nuclear interaction with the E3 ubiquitin ligase PRP19 and thus blocks PRP19-mediated YBX1 degradation. Moreover, our in vitro and in vivo results suggest that circRNA-SORE is transported by exosomes to spread sorafenib resistance among HCC cells. Using different HCC mouse models, we demonstrated that silencing circRNA-SORE by injection of siRNA could substantially overcome sorafenib resistance. Our study provides a proof-of-concept demonstration for a potential strategy to overcome sorafenib resistance in HCC patients by targeting circRNA-SORE or YBX1.


2021 ◽  
Vol 22 (24) ◽  
pp. 13247
Author(s):  
Tugce Batur ◽  
Ayse Argundogan ◽  
Umur Keles ◽  
Zeynep Mutlu ◽  
Hani Alotaibi ◽  
...  

AXL, a member of the TAM family, is a promising therapeutic target due to its elevated expression in advanced hepatocellular carcinoma (HCC), particularly in association with acquired drug resistance. Previously, RNA interference was used to study its role in cancer, and several phenotypic changes, including attenuated cell proliferation and decreased migration and invasion, have been reported. The mechanism of action of AXL in HCC is elusive. We first studied the AXL expression in HCC cell lines by real-time PCR and western blot and showed its stringent association with a mesenchymal phenotype. We then explored the role of AXL in mesenchymal SNU475 cells by CRISPR-Cas9 mediated gene knock-out. AXL-depleted HCC cells displayed drastic phenotypic changes, including increased DNA damage response, prolongation of doubling time, G2 arrest, and polyploidization in vitro and loss of tumorigenicity in vivo. Pharmacological inhibition of AXL by R428 recapitulated G2 arrest and polyploidy phenotype. These observations strongly suggest that acute loss of AXL in some mesenchymal HCC cells is lethal and points out that its inhibition may represent a druggable vulnerability in AXL-high HCC patients.


Cancers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1738
Author(s):  
Hongying Zhang ◽  
Songpeng Yang ◽  
Jiao Wang ◽  
Yangfu Jiang

Aspirin can prevent or inhibit inflammation-related cancers, such as colorectal cancer and hepatocellular carcinoma (HCC). However, the effectiveness of chemotherapy may be compromised by activating oncogenic pathways in cancer cells. Elucidation of such chemoresistance mechanisms is crucial to developing novel strategies to maximize the anti-cancer effects of aspirin. Here, we report that aspirin markedly induces CREB/ATF1 phosphorylation in HCC cells, which compromises aspirin’s anti-HCC effect. Inhibition of AMP-activated protein kinase (AMPK) abrogates the induction of CREB/ATF1 phosphorylation by aspirin. Mechanistically, activation of AMPK by aspirin results in decreased expression of the urea cycle enzyme carbamoyl-phosphate synthase 1 (CPS1) in HCC cells and xenografts. Treatment with aspirin or CPS1 knockdown stimulates soluble adenylyl cyclase expression, thereby increasing cyclic AMP (cAMP) synthesis and stimulating PKA–CREB/ATF1 signaling. Importantly, abrogation of aspirin-induced CREB/ATF1 phosphorylation could sensitize HCC to aspirin. The bis-benzylisoquinoline alkaloid berbamine suppresses the expression of cancerous inhibitor of protein phosphatase 2A (CIP2A), leading to protein phosphatase 2A-mediated downregulation of CREB/ATF1 phosphorylation. The combination of berbamine and aspirin significantly inhibits HCC in vitro and in vivo. These data demonstrate that the regulation of cAMP-PKA-CREB/ATF1 signaling represents a noncanonical function of CPS1. Targeting the PKA–CREB/ATF1 axis may be a strategy to improve the therapeutic effects of aspirin on HCC.


2021 ◽  
Vol 12 ◽  
Author(s):  
Cancan Zheng ◽  
Yidong Zhu ◽  
Qinwen Liu ◽  
Tingting Luo ◽  
Wenwen Xu

Hepatocellular carcinoma (HCC) remains one of the leading causes of cancer-related death and has a poor prognosis worldwide, thus, more effective drugs are urgently needed. In this article, a small molecule drug library composed of 1,056 approved medicines from the FDA was used to screen for anticancer drugs. The tetracyclic compound maprotiline, a highly selective noradrenergic reuptake blocker, has strong antidepressant efficacy. However, the anticancer effect of maprotiline remains unclear. Here, we investigated the anticancer potential of maprotiline in the HCC cell lines Huh7 and HepG2. We found that maprotiline not only significantly restrained cell proliferation, colony formation and metastasis in vitro but also exerted antitumor effects in vivo. In addition to the antitumor effect alone, maprotiline could also enhance the sensitivity of HCC cells to sorafenib. The depth studies revealed that maprotiline substantially decreased the phosphorylation of sterol regulatory element-binding protein 2 (SREBP2) through the ERK signaling pathway, which resulted in decreased cholesterol biosynthesis and eventually impeded HCC cell growth. Furthermore, we identified cellular retinoic acid binding protein 1 (CRABP1) as a direct target of maprotiline. In conclusion, our study provided the first evidence showing that maprotiline could attenuate cholesterol biosynthesis to inhibit the proliferation and metastasis of HCC cells through the ERK-SREBP2 signaling pathway by directly binding to CRABP1, which supports the strategy of repurposing maprotiline in the treatment of HCC.


2017 ◽  
Vol 35 (4_suppl) ◽  
pp. 301-301 ◽  
Author(s):  
Takashi Kokudo ◽  
Yoshinori Inagaki ◽  
Kiyoshi Hasegawa ◽  
Chikara Shirata ◽  
Katsumi Amikura ◽  
...  

301 Background: Patients with advanced hepatocellular carcinoma (HCC) demonstrating a macroscopic portal vein tumor thrombus (PVTT) have been reported to have an extremely poor prognosis. Palliative sorafenib is the only recommended treatment option. Methods: We statistically compared the patient characteristics and surgical outcomes in HCC patients with PVTT. Among 1,611 hepatic resections, 105 cases of PVTT were identified. Microarray analysis was performed in three patients to identify gene expression changes in PVTT compared with those in the principal tumor, and the changes were validated in 20 human HCC tissues with PVTT. The human HCC cell lines HuH-7 and SKHep-1 were used for this experimental study. A subcutaneously transplanted xenograft model was employed for the in vivo study. The c-Met inhibitor SU11274 was used in both in vitro and in vivoanalyses. Results: The median survival time in patients with PVTT was 2.01 years, while that in patients without PVTT was 6.43 years; the median time to recurrence was 0.31 and 1.61 years, respectively. Microarray analysis revealed 36 genes related to PVTT. Immunohistochemistry analysis revealed that compared with the principal tumor, E-cadherin (a key regulator of cancer metastatic potential) significantly decreased in PVTT in all 20 patients. The c-Met inhibitor elevated the E-cadherin expression level in HCC cells both in vitro and in vivo. This inhibitor induced sheet formation and attenuated the migration of HCC cells. Conclusions: Although liver resection provides acceptable overall survival for patients with PVTT, the recurrence rate remains high. The c-Met inhibitor exhibits an anti-metastatic effect in vitro and in vivo and may be useful as an adjuvant treatment for PVTT.


2021 ◽  
Author(s):  
Ting Yu ◽  
Jiajian Yu ◽  
Lu Lu ◽  
Yize Zhang ◽  
Yadong Zhou ◽  
...  

Abstract Purpose Lenvatinib is a long-awaited alternative to Sorafenib for first-line targeted therapy of patients with advanced hepatocellular carcinoma (HCC). However, resistance to Lenvatinib results in tumor progression and has become a major obstacle to improving the prognosis of HCC patients. Exploring the mechanisms underlying Lenvatinib resistance is considered essential for the treatment of advanced HCC. Methods Lenvatinib resistant HCC (LR-HCC) cells were generated and potential long non-coding RNAs (Lnc-RNAs) upregulated in LR-HCC cells were identified by RNA sequencing. The effects of upregulated Lnc-RNAs were evaluated in vitro in cell models and in vivo in experimental animals using quantitative cell viability and apoptosis assays. Results We found that Lnc-RNA MT1JP (MT1JP) was upregulated in LR-HCC cells and inhibited the apoptosis signaling pathway. In addition, we found that sponging of microRNA-24-3p by MT1JP released Bcl-2 like 2 (BCL2L2), an anti-apoptotic protein, thereby forming a positive-feedback loop. The role of this feedback loop was validated using rescue assays. Additionally, we found that upregulation of MT1JP and BCL2L2 impaired the sensitivity of HCC cells to Lenvatinib both vitro and vivo. Conclusions Our results suggest a novel molecular feedback loop between MT1JP and apoptosis signaling in Lenvatinib sensitive HCC cells.


2021 ◽  
Author(s):  
Yu Wang ◽  
Si-Zhe Yu ◽  
Shi-Rong Zhang ◽  
Jia Hou ◽  
Min Jiao ◽  
...  

Abstract Background: Sorafenib has been recognized as the standard therapy for advanced hepatocellular carcinoma (HCC). Besides, efficacy of sorafenib was unsatisfactory and vast patients are resistant to sorafenib. Thus, molecular mechanisms underlying regulation of sorafenib resistance and seeking potential strategy to improve its efficacy have attracted much attention. As a small-molecule inhibitor of IGF-1R, NT157 has potent antitumor activity against some human cancers. However, whether NT157 has potential anti-tumor effects and its molecular mechanisms in HCC remain poorly understood. Methods: We assessed the effects and explored the mechanism of NT157 and sorafenib as single agents or in combination with sorafenib in HCC cells and mouse model. Further, we further demonstrated that NT157 reversed resistance to sorafenib in HCC.Results: Here, we found NT157 inhibited HCC growth and induced apoptosis in vitro and in vivo. In terms of mechanism, NT157 phosphorylated IRS-1 through ERK-MAPK signaling to be degraded by the ubiquitin-proteasome pathway, lowered p-AKT to deactivate IGF-1R signaling to inhibit proliferation and induce apoptosis. Surprisingly, we further demonstrated that NT157 acted synergistically with sorafenib to inhibit proliferation and contributed to sensitize HCC cells to sorafenib by down-regulation of p-AKT. Conclusions: Overall, our findings provide a translational rationale for inhibition of IGF-1R and downstream signaling pathways by NT157 as a novel targeted therapy alone or combined with sorafenib in HCC.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hiroaki Kanzaki ◽  
Tetsuhiro Chiba ◽  
Junjie Ao ◽  
Keisuke Koroki ◽  
Kengo Kanayama ◽  
...  

AbstractFGF19/FGFR4 autocrine signaling is one of the main targets for multi-kinase inhibitors (MKIs). However, the molecular mechanisms underlying FGF19/FGFR4 signaling in the antitumor effects to MKIs in hepatocellular carcinoma (HCC) remain unclear. In this study, the impact of FGFR4/ERK signaling inhibition on HCC following MKI treatment was analyzed in vitro and in vivo assays. Serum FGF19 in HCC patients treated using MKIs, such as sorafenib (n = 173) and lenvatinib (n = 40), was measured by enzyme-linked immunosorbent assay. Lenvatinib strongly inhibited the phosphorylation of FRS2 and ERK, the downstream signaling molecules of FGFR4, compared with sorafenib and regorafenib. Additional use of a selective FGFR4 inhibitor with sorafenib further suppressed FGFR4/ERK signaling and synergistically inhibited HCC cell growth in culture and xenograft subcutaneous tumors. Although serum FGF19high (n = 68) patients treated using sorafenib exhibited a significantly shorter progression-free survival and overall survival than FGF19low (n = 105) patients, there were no significant differences between FGF19high (n = 21) and FGF19low (n = 19) patients treated using lenvatinib. In conclusion, robust inhibition of FGF19/FGFR4 is of importance for the exertion of antitumor effects of MKIs. Serum FGF19 levels may function as a predictive marker for drug response and survival in HCC patients treated using sorafenib.


Sign in / Sign up

Export Citation Format

Share Document