scholarly journals The chloroplast genome sequencing of two important annual Trifolium species T. alexandrinum and T. resupinatum and comparative analysis with other congeneric species

2020 ◽  
Author(s):  
yanli xiong ◽  
yi xiong ◽  
jun he ◽  
qingqing yu ◽  
junming zhao ◽  
...  

Abstract Background: Chloroplast (cp) genome of most plant species has two typical inverted-repeats (IRs) regions. However, in some species this IR structure is lost for unknown reasons and the consequence still needs to be revealed . Here, we present whole cp genome sequencing of Trifolium alexandrinum (Egyptian clover) and T. resupinatum (Persian clover) from the IR lacking clade (IRLC) . Results: Global aligning of T. alexandrinum and T. resupinatum to other eight Trifolium species revealed a large amount of rearrangement and repetitive events in these ten species. We found that IR lacking species have lower GC content and higher percentage of repetition than IR containing species. Abundant single nucleotide polymorphisms (SNPs) and insertions/deletions (In/Dels) were discovered between those two species. As hypothetical cp open reading frame (ORF) and RNA polymerase subunits severally, two genes ycf1 and rpoC2 in the cp genomes, which both contain vast repetitive sequences and high Pi values (0.6656, 0.455) between T. alexandrinum and T. resupinatum , possessed highly variation among ten Trifolium species. Thus they could greatly influence evolutionary process of Trifolium species. In addition, IR containing and IR lacking Trifolium species were estimated to split during the upper Cretaceous period, which was potentially related to the violent crustal movement and sea-land changes. Conclusions: Cp genomes of T. alexandrinum and T. resupinatum, which belong to IRLC were sequenced and annotated in present study, and compared with cp genomes of other eight Trifolium species reported previously. This valuable information will provide insight into the evolution of IR lacking species. Nevertheless, further investigating of the detailed reason of IR lacking is still challenging, but it may be related to the violent crustal movement and sea-land changes of the Cretaceous period presented in this study.

Plants ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 478 ◽  
Author(s):  
Yanli Xiong ◽  
Yi Xiong ◽  
Jun He ◽  
Qingqing Yu ◽  
Junming Zhao ◽  
...  

Trifolium L., which belongs to the IR lacking clade (IRLC), is one of the largest genera in the Leguminosae and contains several economically important fodder species. Here, we present whole chloroplast (cp) genome sequencing and annotation of two important annual grasses, Trifolium alexandrinum (Egyptian clover) and T. resupinatum (Persian clover). Abundant single nucleotide polymorphisms (SNPs) and insertions/deletions (In/Dels) were discovered between those two species. Global alignment of T. alexandrinum and T. resupinatum to a further thirteen Trifolium species revealed a large amount of rearrangement and repetitive events in these fifteen species. As hypothetical cp open reading frame (ORF) and RNA polymerase subunits, ycf1 and rpoC2 in the cp genomes both contain vast repetitive sequences and observed high Pi values (0.7008, 0.3982) between T. alexandrinum and T. resupinatum. Thus they could be considered as the candidate genes for phylogenetic analysis of Trifolium species. In addition, the divergence time of those IR lacking Trifolium species ranged from 84.8505 Mya to 4.7720 Mya. This study will provide insight into the evolution of Trifolium species.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5349 ◽  
Author(s):  
Juan Wang ◽  
Chunjuan Li ◽  
Caixia Yan ◽  
Xiaobo Zhao ◽  
Shihua Shan

BackgroundArachis hypogaeaL. is an economically important oilseed crop worldwide comprising six botanical varieties. In this work, we characterized the chloroplast (cp) genome sequences of the four widely distributed peanut varieties.MethodsThe cp genome data of these four botanical varieties (var.hypogaea, var.hirsuta, var.fastigiata, and var.vulgaris) were obtained by next-generation sequencing. These high-throughput sequencing reads were then assembled, annotated, and comparatively analyzed.ResultsThe total cp genome lengths of the studiedA. hypogaeavarieties were 156,354 bp (var.hypogaea), 156,878 bp (var.hirsuta), 156,718 bp (var.fastigiata), and 156,399 bp (var.vulgaris). Comparative analysis of theses cp genome sequences revealed that their gene content, gene order, and GC content were highly conserved, with only a total of 46 single nucleotide polymorphisms and 26 insertions/deletions identified. Most of the variations were restricted to non-coding sequences, especially, thetrnI-GAU intron region was detected to be highly variable and will be useful for future evolutionary studies.DiscussionThe four cp genome sequences acquired here will provide valuable genetic resources for distinguishingA. hypogaeabotanical varieties and determining their evolutionary relationship.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Xianhang Wang ◽  
Mingxing Tu ◽  
Ya Wang ◽  
Wuchen Yin ◽  
Yu Zhang ◽  
...  

AbstractThe CRISPR (clustered regularly interspaced short palindromic repeats)-associated protein 9 (Cas9) system is a powerful tool for targeted genome editing, with applications that include plant biotechnology and functional genomics research. However, the specificity of Cas9 targeting is poorly investigated in many plant species, including fruit trees. To assess the off-target mutation rate in grapevine (Vitis vinifera), we performed whole-genome sequencing (WGS) of seven Cas9-edited grapevine plants in which one of two genes was targeted by CRISPR/Cas9 and three wild-type (WT) plants. In total, we identified between 202,008 and 272,397 single nucleotide polymorphisms (SNPs) and between 26,391 and 55,414 insertions/deletions (indels) in the seven Cas9-edited grapevine plants compared with the three WT plants. Subsequently, 3272 potential off-target sites were selected for further analysis. Only one off-target indel mutation was identified from the WGS data and validated by Sanger sequencing. In addition, we found 243 newly generated off-target sites caused by genetic variants between the Thompson Seedless cultivar and the grape reference genome (PN40024) but no true off-target mutations. In conclusion, we observed high specificity of CRISPR/Cas9 for genome editing of grapevine.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ho-Yon Hwang ◽  
Jiou Wang

AbstractGenetic mapping is used in forward genetics to narrow the list of candidate mutations and genes corresponding to the mutant phenotype of interest. Even with modern advances in biology such as efficient identification of candidate mutations by whole-genome sequencing, mapping remains critical in pinpointing the responsible mutation. Here we describe a simple, fast, and affordable mapping toolkit that is particularly suitable for mapping in Caenorhabditis elegans. This mapping method uses insertion-deletion polymorphisms or indels that could be easily detected instead of single nucleotide polymorphisms in commonly used Hawaiian CB4856 mapping strain. The materials and methods were optimized so that mapping could be performed using tiny amount of genetic material without growing many large populations of mutants for DNA purification. We performed mapping of previously known and unknown mutations to show strengths and weaknesses of this method and to present examples of completed mapping. For situations where Hawaiian CB4856 is unsuitable, we provide an annotated list of indels as a basis for fast and easy mapping using other wild isolates. Finally, we provide rationale for using this mapping method over other alternatives as a part of a comprehensive strategy also involving whole-genome sequencing and other methods.


Author(s):  
Emmanuel Lecorche ◽  
Côme Daniau ◽  
Kevin La ◽  
Faiza Mougari ◽  
Hanaa Benmansour ◽  
...  

Abstract Background Post-surgical infections due to Mycobacterium chimaera appeared as a novel nosocomial threat in 2015, with a worldwide outbreak due to contaminated heater-cooler units used in open chest surgery. We report the results of investigations conducted in France including whole genome sequencing comparison of patient and HCU isolates. Methods We sought M. chimaera infection cases from 2010 onwards through national epidemiological investigations in healthcare facilities performing cardiopulmonary bypass together with a survey on good practices and systematic heater-cooler unit microbial analyses. Clinical and HCU isolates were subjected to whole genome sequencing analyzed with regards to the reference outbreak strain Zuerich-1. Results Only two clinical cases were shown to be related to the outbreak, although 23% (41/175) heater-cooler units were declared positive for M. avium complex. Specific measures to prevent infection were applied in 89% (50/56) healthcare facilities although only 14% (8/56) of them followed the manufacturer maintenance recommendations. Whole genome sequencing comparison showed that the clinical isolates and 72% (26/36) of heater-cooler unit isolates belonged to the epidemic cluster. Within clinical isolates, 5 to 9 non-synonymous single nucleotide polymorphisms were observed, among which an in vivo mutation in a putative efflux pump gene observed in a clinical isolate obtained for one patient under antimicrobial treatment. Conclusions Cases of post-surgical M. chimaera infections were declared to be rare in France, although heater-cooler units were contaminated as in other countries. Genomic analyses confirmed the connection to the outbreak and identified specific single nucleotide polymorphisms, including one suggesting fitness evolution in vivo.


2020 ◽  
Vol 41 (S1) ◽  
pp. s434-s434
Author(s):  
Grant Vestal ◽  
Steven Bruzek ◽  
Amanda Lasher ◽  
Amorce Lima ◽  
Suzane Silbert

Background: Hospital-acquired infections pose a significant threat to patient health. Laboratories are starting to consider whole-genome sequencing (WGS) as a molecular method for outbreak detection and epidemiological surveillance. The objective of this study was to assess the use of the iSeq100 platform (Illumina, San Diego, CA) for accurate sequencing and WGS-based outbreak detection using the bioMérieux EPISEQ CS, a novel cloud-based software for sequence assembly and data analysis. Methods: In total, 25 isolates, including 19 MRSA isolates and 6 ATCC strains were evaluated in this study: A. baumannii ATCC 19606, B. cepacia ATCC 25416, E. faecalis ATCC 29212, E. coli ATCC 25922, P. aeruginosa ATCC 27853 and S. aureus ATCC 25923. DNA extraction of all isolates was performed on the QIAcube (Qiagen, Hilden, Germany) using the DNEasy Ultra Clean Microbial kit extraction protocol. DNA libraries were prepared for WGS using the Nextera DNA Flex Library Prep Kit (Illumina) and sequenced at 2×150-bp on the iSeq100 according to the manufacturer’s instructions. The 19 MRSA isolates were previously characterized by the DiversiLab system (bioMérieux, France). Upon validation of the iSeq100 platform, a new outbreak analysis was performed using WGS analysis using EPISEQ CS. ATCC sequences were compared to assembled reference genomes from the NCBI GenBank to assess the accuracy of the iSeq100 platform. The FASTQ files were aligned via BowTie2 version 2.2.6 software, using default parameters, and FreeBayes version 1.1.0.46-0 was used to call homozygous single-nucleotide polymorphisms (SNPs) with a minimum coverage of 5 and an allele frequency of 0.87 using default parameters. ATCC sequences were analyzed using ResFinder version 3.2 and were compared in silico to the reference genome. Results: EPISEQ CS classified 8 MRSA isolates as unrelated and grouped 11 isolates into 2 separate clusters: cluster A (5 isolates) and cluster B (6 isolates) with similarity scores of ≥99.63% and ≥99.50%, respectively. This finding contrasted with the previous characterization by DiversiLab, which identified 3 clusters of 2, 8, and 11 isolates, respectively. The EPISEQ CS resistome data detected the mecA gene in 18 of 19 MRSA isolates. Comparative analysis of the ATCCsequences to the reference genomes showed 99.9986% concordance of SNPs and 100.00% concordance between the resistance genes present. Conclusions: The iSeq100 platform accurately sequenced the bacterial isolates and could be an affordable alternative in conjunction with EPISEQ CS for epidemiological surveillance analysis and infection prevention.Funding: NoneDisclosures: None


2017 ◽  
Vol 4 (4) ◽  
Author(s):  
Takashi Matono ◽  
Masatomo Morita ◽  
Koji Yahara ◽  
Ken-ichi Lee ◽  
Hidemasa Izumiya ◽  
...  

Abstract Background Little is known about the evolutionary process and emergence time of resistance mutations to fluoroquinolone in Salmonella enterica serovar Typhi. Methods We analyzed S. Typhi isolates collected from returned travelers between 2001 and 2016. Based on ciprofloxacin susceptibility, isolates were categorized as highly resistant (minimum inhibitory concentration [MIC] ≥ 4 μg/mL [CIPHR]), resistant (MIC = 1–2 μg/mL [CIPR]), intermediate susceptible (MIC = 0.12–0.5 μg/mL [CIPI]), and susceptible (MIC ≤ 0.06 μg/mL [CIPS]). Results A total of 107 isolates (33 CIPHR, 14 CIPR, 30 CIPI, and 30 CIPS) were analyzed by whole-genome sequencing; 2461 single nucleotide polymorphisms (SNPs) were identified. CIPS had no mutations in the gyrA or parC genes, while each CIPI had 1 of 3 single mutations in gyrA (encoding Ser83Phe [63.3%], Ser83Tyr [33.3%], or Asp87Asn [3.3%]). CIPHR had the same 3 mutations: 2 SNPs in gyrA (encoding Ser83Phe and Asp87Asn) and a third in parC (encoding Ser80Ile). CIPHR shared a common ancestor with CIPR and CIPI isolates harboring a single mutation in gyrA encoding Ser83Phe, suggesting that CIPHR emerged 16 to 23 years ago. Conclusions Three SNPs—2 in gyrA and 1 in parC—are present in S. Typhi strains highly resistant to fluoroquinolone, which were found to have evolved in 1993–2000, approximately 10 years after the beginning of the ciprofloxacin era. Highly resistant strains with survival advantages arose from strains harboring a single mutation in gyrA encoding Ser83Phe. Judicious use of fluoroquinolones is warranted to prevent acceleration of such resistance mechanisms in the future.


1994 ◽  
Vol 14 (5) ◽  
pp. 2975-2984
Author(s):  
H Charest ◽  
G Matlashewski

Leishmania protozoans are the causative agents of leishmaniasis, a major parasitic disease in humans. During their life cycle, Leishmania protozoans exist as flagellated promastigotes in the sand fly vector and as nonmotile amastigotes in the mammalian hosts. The promastigote-to-amastigote transformation occurs in the phagolysosomal compartment of the macrophage cell and is a critical step for the establishment of the infection. To study this cytodifferentiation process, we differentially screened an amastigote cDNA library with life cycle stage-specific cDNA probes and isolated seven cDNAs representing amastigote-specific transcripts. Five of these were closely related (A2 series) and recognized, by Northern (RNA) blot analyses, a 3.5-kb transcript in amastigotes and in amastigote-infected macrophages. Expression of the amastigote-specific A2 gene was induced in promastigotes when they were transferred from culture medium at 26 degrees C and pH 7.4 to medium at 37 degrees C and pH 4.5, conditions which mimic the macrophage phagolysosomal environment. A2 genes are clustered in tandem arrays, and a 6-kb fragment corresponding to a unit of the cluster was cloned and partially sequenced. An open reading frame found within the A2-transcribed region potentially encoded a 22-kDa protein containing repetitive sequences. The recombinant A2 protein produced in Escherichia coli cells was specifically recognized by immune serum from a patient with visceral leishmaniasis. The A2 protein repetitive element has strong homology with an S antigen of Plasmodium falciparum, the protozoan parasite responsible for malaria. Both the A2 protein of Leishmania donovani and the S antigen of P. falciparum are stage specific and developmentally expressed in mammalian hosts.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Maosen Ye ◽  
Fei Ye ◽  
Liutao He ◽  
Yiping Liu ◽  
Xiaoling Zhao ◽  
...  

Myozenin3 (Myoz3) has been reported to bind multiple Z-disc proteins and hence play a key role in signal transduction and muscle fiber type differentiation. The purpose of current study is to better understand the basic characteristics of Myoz3. Firstly, we cloned the ORF (open reading frame) of the Myoz3 gene. AA (amino acid) sequence analysis revealed that the Myoz3 gene encodes a 26 kDa protein which have 97% identities with that of turkey. Expression profiling showed that Myoz3 mRNA is mainly expressed in leg muscle and breast muscle. Furthermore, we investigated Myoz3 gene polymorphisms in two broiler breeds, the Yellow Bantam (YB) and the Avian. Five SNPs (single nucleotide polymorphisms) were identified in the YB breed and 3 were identified in the Avian breed. Genotypes and haplotype were constructed and their associations with carcass traits were analyzed. In the YB breed, c.516 C>T had a strong effect on both shank bone length and the L⁎ value of breast muscle, and the H1H3 diplotype had the highest FC compared to other diplotypes. The markers identified in this study may serve as useful targets for the marker-assisted selection (MAS) of growth and meat quality traits in chickens.


Sign in / Sign up

Export Citation Format

Share Document