scholarly journals Molecular Cloning, Expression Profiling, and Marker Validation of the Chicken Myoz3 Gene

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Maosen Ye ◽  
Fei Ye ◽  
Liutao He ◽  
Yiping Liu ◽  
Xiaoling Zhao ◽  
...  

Myozenin3 (Myoz3) has been reported to bind multiple Z-disc proteins and hence play a key role in signal transduction and muscle fiber type differentiation. The purpose of current study is to better understand the basic characteristics of Myoz3. Firstly, we cloned the ORF (open reading frame) of the Myoz3 gene. AA (amino acid) sequence analysis revealed that the Myoz3 gene encodes a 26 kDa protein which have 97% identities with that of turkey. Expression profiling showed that Myoz3 mRNA is mainly expressed in leg muscle and breast muscle. Furthermore, we investigated Myoz3 gene polymorphisms in two broiler breeds, the Yellow Bantam (YB) and the Avian. Five SNPs (single nucleotide polymorphisms) were identified in the YB breed and 3 were identified in the Avian breed. Genotypes and haplotype were constructed and their associations with carcass traits were analyzed. In the YB breed, c.516 C>T had a strong effect on both shank bone length and the L⁎ value of breast muscle, and the H1H3 diplotype had the highest FC compared to other diplotypes. The markers identified in this study may serve as useful targets for the marker-assisted selection (MAS) of growth and meat quality traits in chickens.

2013 ◽  
Vol 57 (11) ◽  
pp. 5658-5664 ◽  
Author(s):  
Soo-Jin Yang ◽  
Nagendra N. Mishra ◽  
Aileen Rubio ◽  
Arnold S. Bayer

ABSTRACTSingle nucleotide polymorphisms (SNPs) within themprFopen reading frame (ORF) have been commonly observed in daptomycin-resistant (DAPr)Staphylococcus aureusstrains. Such SNPs are usually associated with a gain-in-function phenotype, in terms of either increased synthesis or enhanced translocation (flipping) of lysyl-phosphatidylglycerol (L-PG). However, it is unclear if suchmprFSNPs are causal in DAPrstrains or are merely a biomarker for this phenotype. In this study, we used an isogenic set ofS. aureusstrains: (i) Newman, (ii) its isogenic ΔmprFmutant, and (iii) several intransplasmid complementation constructs, expressing either a wild-type or point-mutated form of themprFORF cloned from two isogenic DAP-susceptible (DAPs)-DAPrstrain pairs (616-701 and MRSA11/11-REF2145). Complementation of the ΔmprFstrain with singly point-mutatedmprFgenes (mprFS295LormprFT345A) revealed that (i) individual and distinct point mutations within themprFORF can recapitulate phenotypes observed in donor strains (i.e., changes in DAP MICs, positive surface charge, and cell membrane phospholipid profiles) and (ii) these gain-in-function SNPs (i.e., enhanced L-PG synthesis) likely promote reduced DAP binding toS. aureusby a charge repulsion mechanism. Thus, for these two DAPrstrains, the definedmprFSNPs appear to be causally related to this phenotype.


Plants ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 496 ◽  
Author(s):  
Fidelia Cascini ◽  
Alessio Farcomeni ◽  
Daniele Migliorini ◽  
Laura Baldassarri ◽  
Ilaria Boschi ◽  
...  

Genetic markers can be used in seeds and in plants to distinguish drug-type from fiber-type Cannabis Sativa L. varieties even at early stages, including pre-germination when cannabinoids are not accumulated yet. With this aim, this paper reports sequencing results for tetrahydrocannabinolic acid synthase (THCAS) and cannabidiolic acid synthase (CBDAS) genes from 21 C. sativa L. varieties. Taking into account that THCAS- and CBDAS-derived enzymes compete for the same substrate, the novelty of this work relies in the identification of markers based on both THCAS and CBDAS rather than THCAS alone. Notably, in our panel, we achieved an adequate degree of discrimination (AUC 100%) between drug-type and fiber-type cannabis samples. Our sequencing approach allowed identifying multiple genetic markers (single-nucleotide polymorphisms—SNPs—and a deletion/insertion) that effectively discriminate between the two subgroups of cannabis, namely fiber type vs. drug type. We identified four functional SNPs that are likely to induce decreased THCAS activity in the fiber-type cannabis plants. We also report the finding on a deletion in the CBDAS gene sequence that produces a truncated protein, possibly resulting in loss of function of the enzyme in the drug-type varieties. Chemical analyses for the actual concentration of cannabinoids confirmed the identification of drug-type rather than fiber-type genotypes. Genetic markers permit an early identification process for forensic applications while simplifying the procedures related to detection of therapeutic or industrial hemp.


Animals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2574
Author(s):  
Sae-Young Won ◽  
Yong-Chan Kim ◽  
Kyoungtag Do ◽  
Byung-Hoon Jeong

Prion disease is a fatal infectious disease caused by the accumulation of pathogenic prion protein (PrPSc) in several mammals. However, to date, prion disease has not been reported in horses. The Sho protein encoded by the shadow of the prion protein gene (SPRN) plays an essential role in the pathomechanism of prion diseases. To date, the only genetic study of the equine SPRN gene has been reported in the inbred horse, Thoroughbred horse. We first discovered four SPRN single nucleotide polymorphisms (SNPs) in 141 Jeju and 88 Halla horses by direct DNA sequencing. In addition, we found that the genotype, allele and haplotype frequencies of these SNPs of Jeju horses were significantly different from those of Halla and Thoroughbred horses, this latter breed is also included in this study. Furthermore, we observed that the minimum free energy and mRNA secondary structure were significantly different according to haplotypes of equine SPRN polymorphisms by the RNAsnp program. Finally, we compared the SNPs in the coding sequence (CDS) of the SPRN gene between horses and prion disease-susceptible species. Notably, prion disease-susceptible animals had polymorphisms that cause amino acid changes in the open reading frame (ORF) of the SPRN gene, while these polymorphisms were not found in horses.


DNA Sequence ◽  
2007 ◽  
Vol 18 (5) ◽  
pp. 357-362 ◽  
Author(s):  
Patrick M. Kgwatalala ◽  
Patrick M. Kgwatalala ◽  
Eveline M. Ibeagha-Awemu ◽  
Patrick M. Kgwatalala ◽  
Eveline M. Ibeagha-Awemu ◽  
...  

2018 ◽  
Vol 85 (2) ◽  
pp. 133-137
Author(s):  
Tingxian Deng ◽  
Xiaoya Ma ◽  
Chunying Pang ◽  
Shasha Liang ◽  
Xingrong Lu ◽  
...  

The study reported in this Research Communication was conducted to investigate the molecular characterisation of buffalo SCAP gene, expression analysis, and the association between single nucleotide polymorphisms and milk production traits in 384 buffaloes. Sequence analysis revealed the SCAP gene had an open reading frame of 3837 bp encoding 1279 amino acids. A ubiquitous expression profile of SCAP gene was detected in various tissues with extreme predominance in the mammary gland during early lactation. Moreover, eleven SNPs in buffalo SCAP gene were identified, six of them (g.1717600A>G, g.1757922C>T, g.1758953G>A, g.1759142C>T, g.1760740G>A, and g.1766036T>C) were found to be significantly associated with 305-day milk yield. Thus, buffalo SCAP could sever as a candidate gene affecting milk production traits in buffalo and the identified SNPs might potentially be genetic markers.


2018 ◽  
Vol 31 (7) ◽  
pp. 766-776 ◽  
Author(s):  
Maliheh Safari ◽  
Marilyn J. Roossinck

There are many nonpathogenic viruses that are maintained in a persistent lifestyle in plants. Plant persistent viruses are widespread, replicating in their hosts for many generations. So far, Endornaviridae is the only family of plant persistent viruses with a single-stranded RNA genome, containing one large open reading frame. Bell pepper endornavirus (BPEV), Hot pepper endornavirus, Capsicum frutescens endornavirus 1 (CFEV 1) have been identified from peppers. Peppers are native to Central and South America and, as domesticated plants, human selection accelerated their evolution. We investigated the evolution of these endornaviruses in different peppers including Capsicum annuum, C. chacoense, C. chinense, C. frutescens, C. baccutum, and C. pubescens using two fragments from the viral helicase (Hel) and RNA dependent RNA polymerase (RdRp) domains. In addition, using single nucleotide polymorphisms, we analyzed the pepper host populations and phylogenies. The endornaviruses phylogeny was correlated with its Capsicum species host. In this study, BPEV was limited to C. annuum species, and the RdRp and Hel phylogenies identified two clades that correlated with the host pungency. No C. annuum infected with CFEV 1 was found in this study, but the CFEV 1 RdRp fragment was recovered from C. chinense, C. frutescens, C. baccutum, and C. pubescens. Hence, during pepper speciation, the ancestor of CFEV 1 may have evolved as a new endornavirus, BPEV, in C. annuum peppers.


Plants ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 478 ◽  
Author(s):  
Yanli Xiong ◽  
Yi Xiong ◽  
Jun He ◽  
Qingqing Yu ◽  
Junming Zhao ◽  
...  

Trifolium L., which belongs to the IR lacking clade (IRLC), is one of the largest genera in the Leguminosae and contains several economically important fodder species. Here, we present whole chloroplast (cp) genome sequencing and annotation of two important annual grasses, Trifolium alexandrinum (Egyptian clover) and T. resupinatum (Persian clover). Abundant single nucleotide polymorphisms (SNPs) and insertions/deletions (In/Dels) were discovered between those two species. Global alignment of T. alexandrinum and T. resupinatum to a further thirteen Trifolium species revealed a large amount of rearrangement and repetitive events in these fifteen species. As hypothetical cp open reading frame (ORF) and RNA polymerase subunits, ycf1 and rpoC2 in the cp genomes both contain vast repetitive sequences and observed high Pi values (0.7008, 0.3982) between T. alexandrinum and T. resupinatum. Thus they could be considered as the candidate genes for phylogenetic analysis of Trifolium species. In addition, the divergence time of those IR lacking Trifolium species ranged from 84.8505 Mya to 4.7720 Mya. This study will provide insight into the evolution of Trifolium species.


2020 ◽  
Vol 8 (11) ◽  
pp. 896
Author(s):  
Ruijuan Hao ◽  
Chuchu Mo ◽  
Linda Adzigbli ◽  
Chuangye Yang ◽  
Yuewen Deng ◽  
...  

Fibroblast growth factor 18 (FGF18) plays an important functional role in skeletal growth and development. The FGF18 gene was characterized in pearl oyster Pinctada fucata martensii (PmFGF18) with the full-length sequence containing an open reading frame of 714 bp encoding 237 amino acids. The domain analysis of PmFGF18 showed a distinctive FGF domain, with a high similarity to FGF18 protein sequences from Crassostrea gigas (43.35%) and C. virginica (37.43%). PmFGF18 expression was revealed in all analyzed tissues with a significantly higher expression level in the fast-growing group than the slow-growing group. The analysis of PmFGF18 polymorphism demonstrated 33 SNPs (single nucleotide polymorphisms) in the CDS and promoter region of PmFGF18 sequence. Association analysis revealed 19 SNPs (2 SNPs from CDS and 17 SNPs from the promoter region) associating significantly with growth traits. Among the associated SNPs, one SNP g.50918198 A > C was verified in the other breeding line. Therefore, PmFGF18 can be utilized as a candidate gene for growth, and its related SNPs could be used in selective breeding of P. f. martensii for the improvement of growth traits.


Sign in / Sign up

Export Citation Format

Share Document