scholarly journals Cytocompatibility of 3D printed dental materials for temporary restorations on fibroblasts

2020 ◽  
Author(s):  
Jung-Hyun Park ◽  
Hyun Lee ◽  
Jong-Woo Kim ◽  
Ji-Hwan Kim

Abstract Background Three-dimensional (3D) printing is widely used in the fabrication of dental prostheses; however, the influence of dental materials used for 3D printing on temporary restoration of fibroblasts in tissues is unclear. Thus, the influence of different dental materials on fibroblasts were investigated. Methods Digital light processing (DLP) type 3D printing was used. Specimens in the control group were fabricated by mixing liquid and powder self-curing resin restoration materials. The temporary resin materials used were Model, Castable, Clear-SG, Tray, and Temporary, and the self-curing resin materials used were Lang dental, Alike, Milky blue, TOKVSO CUREFAST, and UniFast III. Fibroblast cells were cultured on each specimen and subsequently post-treated for analysis. Morphology of the adhered cells were observed using a confocal laser scanning microscope (CLSM) and a scanning electron microscope (SEM). Results CLSM and SEM cell imaging revealed that the 3D printed material group presented better cell adhesion with well-distributed filopodia compared to that in the conventional resin material group. Cell proliferation was significantly higher in the 3D printing materials. Conclusion This indicates that using resins fabricated by 3D printing technology rather than the ones fabricated by self-curing technology is recommended for the fabrication of dental temporary restorations.

2020 ◽  
Author(s):  
Jung-Hyun Park ◽  
Hyun Lee ◽  
Jong-Woo Kim ◽  
Ji-Hwan Kim

Abstract Background Three-dimensional (3D) printing is widely used in the fabrication of dental prostheses; however, the influence of dental materials used for 3D printing on temporary restoration of fibroblasts in tissues is unclear. Thus, the influence of different dental materials on fibroblasts were investigated. Methods Digital light processing (DLP) type 3D printing was used. Specimens in the control group were fabricated by mixing liquid and powder self-curing resin restoration materials. The temporary resin materials used were Model, Castable, Clear-SG, Tray, and Temporary, and the self-curing resin materials used were Lang dental, Alike, Milky blue, TOKVSO CUREFAST, and UniFast III. Fibroblast cells were cultured on each specimen and subsequently post-treated for analysis. Morphology of the adhered cells were observed using a confocal laser scanning microscope (CLSM) and a scanning electron microscope (SEM). Results CLSM and SEM cell imaging revealed that the 3D printed material group presented better cell adhesion with well-distributed filopodia compared to that in the conventional resin material group. Cell proliferation was significantly higher in the 3D printing materials. Conclusion Superior cytocompatibility of the specimens fabricated through 3D printing and polishing process was demonstrated with the proof of better cell adhesion and higher cell proliferation.


2020 ◽  
Author(s):  
Jung-Hyun Park ◽  
Hyun Lee ◽  
Jong-Woo Kim ◽  
Ji-Hwan Kim

Abstract Background Three-dimensional (3D) printing is widely used in the fabrication of dental prostheses; however, the influence of dental materials used for 3D printing on temporary restoration of fibroblasts in tissues is unclear. Thus, the influence of different dental materials on fibroblasts were investigated. Methods Digital light processing (DLP) type 3D printing was used. Specimens in the control group were fabricated by mixing liquid and powder self-curing resin restoration materials. The temporary resin materials used were Model, Castable, Clear-SG, Tray, and Temporary, and the self-curing resin materials used were Lang dental, Alike, Milky blue, TOKVSO CUREFAST, and UniFast III. Fibroblast cells were cultured on each specimen and subsequently post-treated for analysis. Morphology of the adhered cells were observed using a confocal laser scanning microscope (CLSM) and a scanning electron microscope (SEM). Results CLSM and SEM cell imaging revealed that the 3D printed material group presented better cell adhesion with well-distributed filopodia compared to that in the conventional resin material group. Cell proliferation was significantly higher in the 3D printing materials. Conclusion Superior cytocompatibility of the specimens fabricated through 3D printing and polishing process was demonstrated with the proof of better cell adhesion and higher cell proliferation.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1524
Author(s):  
Sadikalmahdi Abdella ◽  
Souha H. Youssef ◽  
Franklin Afinjuomo ◽  
Yunmei Song ◽  
Paris Fouladian ◽  
...  

Three-dimensional (3D) printing is among the rapidly evolving technologies with applications in many sectors. The pharmaceutical industry is no exception, and the approval of the first 3D-printed tablet (Spiratam®) marked a revolution in the field. Several studies reported the fabrication of different dosage forms using a range of 3D printing techniques. Thermosensitive drugs compose a considerable segment of available medications in the market requiring strict temperature control during processing to ensure their efficacy and safety. Heating involved in some of the 3D printing technologies raises concerns regarding the feasibility of the techniques for printing thermolabile drugs. Studies reported that semi-solid extrusion (SSE) is the commonly used printing technique to fabricate thermosensitive drugs. Digital light processing (DLP), binder jetting (BJ), and stereolithography (SLA) can also be used for the fabrication of thermosensitive drugs as they do not involve heating elements. Nonetheless, degradation of some drugs by light source used in the techniques was reported. Interestingly, fused deposition modelling (FDM) coupled with filling techniques offered protection against thermal degradation. Concepts such as selection of low melting point polymers, adjustment of printing parameters, and coupling of more than one printing technique were exploited in printing thermosensitive drugs. This systematic review presents challenges, 3DP procedures, and future directions of 3D printing of thermo-sensitive formulations.


Author(s):  
Yurui Shen ◽  
Dezheng Hua ◽  
Xinhua Liu ◽  
Weihua Li ◽  
Grzegorz Krolczyk ◽  
...  

Abstract In order to study the rheological properties of aqueous magnetorheological fluids (MRFs) from microscopic point of view, an experimental observation method based on the fluorescence confocal laser scanning microscope is proposed to clearly produce the chain shape of the magnetic particles. Firstly, the mathematical model of the magnetic particles is established in a magnetic field using the magnetic dipole theory, and the MRFs with different fraction volumes and different magnetic fields are investigated. Furthermore, an aqueous MRFs experiment is prepared, in which the magnetic particles are combined with Alexa 488 fluorescent probe. On this basis, an observation method is innovatively developed using two-dimensional (2D) and three-dimensional (3D) image analysis by the fluorescence confocal microscope. The rheological mechanism of the aqueous MRFs is investigated using four different types of MRFs in an external magnetic field. The analysis results demonstrate that the simulation and experimental rheological properties of the MRFs are consistent with the magnetic dipole theory. Moreover, the proposed method is able to real-time observe the rheological process of the MRFs with a very high resolution, which ensures the correctness of the analysis results of the rheological mechanism.


2002 ◽  
Vol 18 (4) ◽  
pp. 173-183
Author(s):  
Wen-Jong Chen ◽  
Chih-Kung Lee ◽  
Shui-Shong Lu ◽  
Long-Sun Huang ◽  
Ta-Shun Chu ◽  
...  

ABSTRACTAn integrated optical method for measuring deformation of micro-mechanical systems with better than sub-micron resolutions is detailed. Both a confocal laser scanning microscope and a photon tunneling microscope were integrated into a single microscopy system due to their complimentary capabilities for examining sub-micrometer deformations. A halogen lamp and laser were adopted as the two light sources for the measurements. Since topographic information of samples up to a 15μm by 15μm area can be measured, a three-dimensional displacement field of the sample was extracted by comparing topographies of the same specimen area before and after deformation. The bending and twisting deformation of a micro-mirror driven by the electrostatic force was measured to demonstrate the capability of this newly developed instrument. The experimental data obtained agrees reasonably well with the theoretical results calculated by adopting an analytical solution and a finite element method. The small discrepancy in the result can be traced to the surface roughness effect, which is often non-negligible in micro-systems.


2020 ◽  
Vol 45 (1) ◽  
pp. 30-40 ◽  
Author(s):  
A Kessler ◽  
R Hickel ◽  
M Reymus

SUMMARY Three-dimensional (3D) printing is a rapidly developing technology that has gained widespread acceptance in dentistry. Compared to conventional (lost-wax technique) and subtractive computer numeric controlled methods, 3D printing offers process engineering advantages. Materials such as plastics, metals, and ceramics can be manufactured using various techniques. 3D printing was introduced over three decades ago. Today, it is experiencing rapid development due to the expiration of many patents and is often described as the key technology of the next industrial revolution. The transition to its clinical application in dentistry is highly dependent on the available materials, which must not only provide the required accuracy but also the necessary biological and physical properties. The aim of this work is to provide an up-to-date overview of the different printing techniques: stereolithography, digital light processing, photopolymer jetting, material jetting, binder jetting, selective laser sintering, selective laser melting, and fused filament fabrication. Additionally, particular attention is paid to the materials used in dentistry and their clinical application.


Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 2894 ◽  
Author(s):  
Silviu Mirel Pituru ◽  
Maria Greabu ◽  
Alexandra Totan ◽  
Marina Imre ◽  
Mihaela Pantea ◽  
...  

This paper’s primary aim is to outline relevant aspects regarding the biocompatibility of PMMA (poly(methyl methacrylate))-based materials used for obtaining interim prosthetic restorations, such as the interaction with oral epithelial cells, fibroblasts or dental pulp cells, the salivary oxidative stress response, and monomer release. Additionally, the oral environment’s biochemical response to modern interim dental materials containing PMMA (obtained via subtractive or additive methods) is highlighted in this review. The studies included in this paper confirmed that PMMA-based materials interact in a complex way with the oral environment, and therefore, different concerns about the possible adverse oral effects caused by these materials were analyzed. Adjacent to these aspects, the present work describes several advantages of PMMA-based dental materials. Moreover, the paper underlines that recent scientific studies ascertain that the modern techniques used for obtaining interim prosthetic materials, milled PMMA, and 3D (three-dimensional) printed resins, have distinctive advantages compared to the conventional ones. However, considering the limited number of studies focusing on the chemical composition and biocompatibility of these modern interim prosthetic materials, especially for the 3D printed ones, more aspects regarding their interaction with the oral environment need to be further investigated.


2019 ◽  
Vol 98 (11) ◽  
pp. 1239-1244 ◽  
Author(s):  
S.H. Park ◽  
Y.S. Lee ◽  
D.S. Lee ◽  
J.C. Park ◽  
R. Kim ◽  
...  

Dentin hypersensitivity commonly occurs due to opened dentinal tubules for many reasons. In our previous study, copine 7 (CPNE7) could induce dentin formation for an indirect pulp-capping model in vivo. This study aims to investigate the formation of tertiary dentin when CPNE7 is applied to intentionally exposed dentin with nothing over it in vivo, whether it affects microleakage of the teeth, and the penetration ability of CPNE7 molecules through dentinal tubules in vitro. Cervical dentin areas of 6 maxillary incisors of 5 beagles were exposed to a class V–like lesion, and 1 side of 3 maxillary incisors was adapted with recombinant CPNE7 protein for 5 min as the experimental group. The other side was the control group, and there was no treatment of ethylenediaminetetraacetic acid (EDTA) and CPNE7 after preparation. The defects were exposed without any restorations, and all beagles were sacrificed after 4 wk. The fluid penetration of exposed dentin areas was investigated by a microleakage-testing device and confocal laser scanning microscope. Tertiary dentin formation was confirmed with histological scanning electronic microscopic analysis. Tertiary dentin formation reduces dentinal fluid flow due to occluded tubules or discontinuity with primary or secondary dentin. The in vivo hypersensitivity model with the anterior teeth of beagle dogs showed newly formed tertiary dentin at the dentin-pulp boundary in recombinant CPNE7–treated teeth when compared with the untreated control group in histologic analysis. Scanning electronic microscopic analysis revealed occluded sites with mineral deposition of intratubular dentin. In the permeability test, the mean microleakage value of the CPNE7-treated group was significantly lower than that of the control group ( P < 0.05). The tubular penetration of rhodamine B–combined CPNE7 was confirmed under confocal laser scanning microscope. CPNE7 induces formation of tertiary dentin through shallowly exposed dentinal tubules, which decreases dentin permeability.


2016 ◽  
Vol 83 (6) ◽  
Author(s):  
Yibo Zou ◽  
Markus Kästner ◽  
Eduard Reithmeier

AbstractIn this article, fractal analysis combined with roughness measurement is proposed to characterize the new generations of HVOF sprayed coatings' surface textures. Two-dimensional and three-dimensional box counting algorithms are introduced to determine the fractal dimension, which is considered as a scale-invariant parameter and is able to describe chaos and complexity of the surface. For surface roughness metrology, a confocal laser scanning microscope with different lenses is used to acquire the areal topography, providing a sequence of height maps with different image resolutions. Typical areal roughness parameters are assessed based on the international standard ISO-25178. The results show that the fractal dimension is a powerful tool to depict the nature of the surface texture of the investigated coatings. Moreover, it is found that the traditional amplitude roughness parameters depend strongly on the range of the measurement field as well as the datasets' resolution, whereas the fractal dimension is rather invariant to the scales of the measured datasets. Finally, the correlation between the fractal dimension and roughness parameters is given at the end of this paper.


Sign in / Sign up

Export Citation Format

Share Document