scholarly journals Longitudinal Spatial Patterns of Intrinsic Brain Activity and Functional Connectivity in Upper Limb Amputees Patients

2020 ◽  
Author(s):  
Bingbo Bao ◽  
Lei Duan ◽  
Haifeng Wei ◽  
Pengbo Luo ◽  
Hongyi Zhu ◽  
...  

Abstract Background: Amputation in adults is a serious condition and previous studies suggested a remapping of representations in motor and sensory brain networks. However, little is known about the longitudinal reorganizing pattern in upper limb amputees’ patients.Methods: The present study included 8 healthy volunteers and 16 patients with amputation. We use resting-state fMRI to investigate the local and large-scale brain plasticity in patients suffering from amputation. Both the amplitude of low-frequency fluctuations (ALFF) and degree centrality (DC) were used for the assessment of neuroplasticity.Results: We described changes in spatial patterns of intrinsic brain activity and functional connectivity in amputees; and we found that not only the sensory and motor cortex, but also the cognitive-related brain regions involved in the functional plasticity after upper extremity deafferentation.Conclusion: Our findings showed local and extensive cortical changes in the sensorimotor and cognitive-related brain regions, which may imply the dysfunction in not only sensory and motor function, but also sensorimotor integration and motor plan. The changes in activation and intrinsic connectivity in the brain showed correlation with the deafferentation status.

2020 ◽  
Author(s):  
bingbo bao ◽  
xuyun hua ◽  
haifeng wei ◽  
pengbo luo ◽  
hongyi zhu ◽  
...  

Abstract Background: Amputation in adults is a serious condition and most patients were associated with the remapping of representations in motor and sensory brain network. Methods: The present study includes 8 healthy volunteers and 16 patients with amputation. We use resting-state fMRI to investigate the local and extent brain plasticity in patients suffering from amputation simultaneously. Both the amplitude of low-frequency fluctuations (ALFF) and degree centrality (DC) were used for the assessment of neuroplasticity in central level. Results: We described changes in spatial patterns of intrinsic brain activity and functional connectivity in amputees in the present study and we found that not only the sensory and motor cortex, but also the related brain regions involved in the functional plasticity after upper extremity deafferentation. Conclusion: Our findings showed local and extensive cortical changes in the sensorimotor and cognitive-related brain regions, which may imply the dysfunction in not only sensory and motor function, but also sensorimotor integration and motor plan. The activation and intrinsic connectivity in the brain changed a lot showed correlation with the deafferentation status.


Author(s):  
Hana Burianová

Determining the mechanisms that underlie neurocognitive aging, such as compensation or dedifferentiation, and facilitating the development of effective strategies for cognitive improvement is essential due to the steadily rising aging population. One approach to study the characteristics of healthy aging comprises the assessment of functional connectivity, delineating markers of age-related neurocognitive plasticity. Functional connectivity paradigms characterize complex one-to-many (or many-to-many) structure–function relations, as higher-level cognitive processes are mediated by the interaction among a number of functionally related neural areas rather than localized to discrete brain regions. Task-related or resting-state interregional correlations of brain activity have been used as reliable indices of functional connectivity, delineating age-related alterations in a number of large-scale brain networks, which subserve attention, working memory, episodic retrieval, and task-switching. Together with behavioral and regional activation studies, connectivity studies and modeling approaches have contributed to our understanding of the mechanisms of age-related reorganization of distributed functional networks; specifically, reduced neural specificity (dedifferentiation) and associated impairment in inhibitory control and compensatory neural recruitment.


2019 ◽  
Vol 30 (3) ◽  
pp. 1716-1734 ◽  
Author(s):  
Ryan V Raut ◽  
Anish Mitra ◽  
Scott Marek ◽  
Mario Ortega ◽  
Abraham Z Snyder ◽  
...  

Abstract Spontaneous infra-slow (<0.1 Hz) fluctuations in functional magnetic resonance imaging (fMRI) signals are temporally correlated within large-scale functional brain networks, motivating their use for mapping systems-level brain organization. However, recent electrophysiological and hemodynamic evidence suggest state-dependent propagation of infra-slow fluctuations, implying a functional role for ongoing infra-slow activity. Crucially, the study of infra-slow temporal lag structure has thus far been limited to large groups, as analyzing propagation delays requires extensive data averaging to overcome sampling variability. Here, we use resting-state fMRI data from 11 extensively-sampled individuals to characterize lag structure at the individual level. In addition to stable individual-specific features, we find spatiotemporal topographies in each subject similar to the group average. Notably, we find a set of early regions that are common to all individuals, are preferentially positioned proximal to multiple functional networks, and overlap with brain regions known to respond to diverse behavioral tasks—altogether consistent with a hypothesized ability to broadly influence cortical excitability. Our findings suggest that, like correlation structure, temporal lag structure is a fundamental organizational property of resting-state infra-slow activity.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Yu-Chen Chen ◽  
Jian Zhang ◽  
Xiao-Wei Li ◽  
Wenqing Xia ◽  
Xu Feng ◽  
...  

Objective. Subjective tinnitus is hypothesized to arise from aberrant neural activity; however, its neural bases are poorly understood. To identify aberrant neural networks involved in chronic tinnitus, we compared the resting-state functional magnetic resonance imaging (fMRI) patterns of tinnitus patients and healthy controls.Materials and Methods. Resting-state fMRI measurements were obtained from a group of chronic tinnitus patients (n=29) with normal hearing and well-matched healthy controls (n=30). Regional homogeneity (ReHo) analysis and functional connectivity analysis were used to identify abnormal brain activity; these abnormalities were compared to tinnitus distress.Results. Relative to healthy controls, tinnitus patients had significant greater ReHo values in several brain regions including the bilateral anterior insula (AI), left inferior frontal gyrus, and right supramarginal gyrus. Furthermore, the left AI showed enhanced functional connectivity with the left middle frontal gyrus (MFG), while the right AI had enhanced functional connectivity with the right MFG; these measures were positively correlated with Tinnitus Handicap Questionnaires (r=0.459,P=0.012andr=0.479,P=0.009, resp.).Conclusions. Chronic tinnitus patients showed abnormal intra- and interregional synchronization in several resting-state cerebral networks; these abnormalities were correlated with clinical tinnitus distress. These results suggest that tinnitus distress is exacerbated by attention networks that focus on internally generated phantom sounds.


2016 ◽  
Author(s):  
Chao-Gan Yan ◽  
Zhen Yang ◽  
Stanley J. Colcombe ◽  
Xi-Nian Zuo ◽  
Michael P. Milham

ABSTRACTVarious resting-state fMRI (R-fMRI) measures have been developed to characterize intrinsic brain activity. While each of these measures has gained a growing presence in the literature, questions remain regarding the common and unique aspects these indices capture. The present work provided a comprehensive examination of inter-individual variation and intra-individual temporal variation for commonly used measures, including fractional amplitude of low frequency fluctuations, regional homogeneity, voxel-mirrored homotopic connectivity, network centrality and global signal correlation. Regardless of whether examining intra-individual or inter-individual variation, we found that these definitionally distinct R-fMRI indices tend to exhibit a relatively high degree of covariation, which doesn’t exist in phase randomized surrogate data. As a measure of intrinsic brain function, concordance for R-fMRI indices was negatively correlated with age across individuals (i.e., concordance among functional indices decreased with age). To understand the functional significance of concordance, we noted that higher concordance was generally associated with higher strengths of R-fMRI indices, regardless of whether looking through the lens of inter-individual (i.e., high vs. low concordance participants) or intra-individual (i.e., high vs. low concordance states identified via temporal dynamic analyses) differences. We also noted a linear increase in functional concordance together with the R-fMRI indices through the scan, which may suggest a decrease in arousal. The current study demonstrated an enriched picture regarding the relationship among the R-fMRI indices, as well as provided new insights in examining dynamic states within and between individuals.


2021 ◽  
Author(s):  
Georgia Mary Cotter ◽  
Mohamed Salah Khlif ◽  
Laura Bird ◽  
Mark E Howard ◽  
Amy Brodtmann ◽  
...  

Background and Purpose. Fatigue is associated with poor functional outcomes and increased mortality following stroke. Survivors identify fatigue as one of their key unmet needs. Despite the growing body of research into post-stroke fatigue, the specific neural mechanisms remain largely unknown. Methods. This observational study included 63 stroke survivors (22 women; age 30-89 years; mean 67.5 years) from the Cognition And Neocortical Volume After Stroke (CANVAS) study, a cohort study examining cognition, mood, and brain volume in stroke survivors following ischaemic stroke. Participants underwent brain imaging 3 months post-stroke, including a 7-minute resting state fMRI echoplanar sequence. We calculated the fractional amplitude of low-frequency fluctuations, a measure of resting state brain activity at the whole-brain level. Results. Forty-five participants reported experiencing post-stroke fatigue as measured by an item on the Patient Health Questionnaire-9. A generalised linear regression model analysis with age, sex, and stroke severity covariates was conducted to compare resting state brain activity in the 0.01-0.08 Hz range, as well as its subcomponents - slow-5 (0.01-0.027 Hz), and slow-4 (0.027-0.073 Hz) frequency bands between fatigued and non-fatigued participants. We found no significant associations between post-stroke fatigue and ischaemic stroke lesion location or stroke volume. However, in the overall 0.01-0.08 Hz band, participants with post-stroke fatigue demonstrated significantly lower resting-state activity in the calcarine cortex (p<0.001, cluster-corrected pFDR=0.009, k=63) and lingual gyrus (p<0.001, cluster-corrected pFDR=0.025, k=42) and significantly higher activity in the medial prefrontal cortex (p<0.001, cluster-corrected pFDR=0.03, k=45), attributed to slow-4 and slow-5 oscillations, respectively. Conclusions. Post-stroke fatigue is associated with posterior hypoactivity and prefrontal hyperactivity, reflecting dysfunction within large-scale brain systems such as fronto-striatal-thalamic and frontal-occipital networks. These systems in turn might reflect a relationship between post-stroke fatigue and abnormalities in executive and visual functioning. This first whole-brain resting-state study provides new targets for further investigation of post-stroke fatigue beyond the lesion approach.


2015 ◽  
Vol 112 (27) ◽  
pp. 8463-8468 ◽  
Author(s):  
Sepideh Sadaghiani ◽  
Jean-Baptiste Poline ◽  
Andreas Kleinschmidt ◽  
Mark D’Esposito

Most brain activity occurs in an ongoing manner not directly locked to external events or stimuli. Regional ongoing activity fluctuates in unison with some brain regions but not others, and the degree of long-range coupling is called functional connectivity, often measured with correlation. Strength and spatial distributions of functional connectivity dynamically change in an ongoing manner over seconds to minutes, even when the external environment is held constant. Direct evidence for any behavioral relevance of these continuous large-scale dynamics has been limited. Here, we investigated whether ongoing changes in baseline functional connectivity correlate with perception. In a continuous auditory detection task, participants perceived the target sound in roughly one-half of the trials. Very long (22–40 s) interstimulus intervals permitted investigation of baseline connectivity unaffected by preceding evoked responses. Using multivariate classification, we observed that functional connectivity before the target predicted whether it was heard or missed. Using graph theoretical measures, we characterized the difference in functional connectivity between states that lead to hits vs. misses. Before misses compared with hits and task-free rest, connectivity showed reduced modularity, a measure of integrity of modular network structure. This effect was strongest in the default mode and visual networks and caused by both reduced within-network connectivity and enhanced across-network connections before misses. The relation of behavior to prestimulus connectivity was dissociable from that of prestimulus activity amplitudes. In conclusion, moment to moment dynamic changes in baseline functional connectivity may shape subsequent behavioral performance. A highly modular network structure seems beneficial to perceptual efficiency.


2020 ◽  
Author(s):  
Nina von Schwanenflug ◽  
Stephan Krohn ◽  
Josephine Heine ◽  
Friedemann Paul ◽  
Harald Prüss ◽  
...  

ABSTRACTIntroductionAnti-N-methyl-d-aspartate receptor encephalitis (NMDARE) is an autoimmune disorder associated with severe neuropsychiatric symptoms. While patients with NMDARE exhibit disrupted functional connectivity (FC), these findings have been limited to static connectivity analyses. This study applies time-resolved FC analysis to explore the temporal variability of large-scale brain activity in NMDARE and to assess the discriminatory power of functional brain states in a supervised classification approach.MethodsResting-state fMRI data from 57 patients with NMDARE and 61 controls was included. To capture brain dynamics, four discrete connectivity states were extracted and state-wise group differences in FC, occurrence, dwell time and transition frequency were assessed. Furthermore, logistic regression models with embedded feature selection were trained for each state to predict group status in a leave-one-out cross validation scheme.ResultsPatients showed FC alterations in three out of four states. Besides a reduction in hippocampal-frontal connectivity, we observed connectivity decreases within the default mode network and between frontal areas and subcortical as well as visual regions, which remained undetected in static FC. Furthermore, patients displayed a shift in dwell time from the weakly connected dominant state to a higher connected, but less frequent state, accompanied by increased transition frequencies. Discriminatory network features and predictive power varied dynamically over states, reaching up to 78.6% classification accuracy.ConclusionPatients showed state-specific alterations in FC along with a shift in dwell time and increased volatility of state transitions. These measures were associated with disease severity and duration, highlighting the potential of spatiotemporal dynamics in FC as prognostic biomarkers in NMDARE.


2017 ◽  
Author(s):  
David E. Warren ◽  
Matthew J. Sutterer ◽  
Joel Bruss ◽  
Taylor J. Abel ◽  
Andrew Jones ◽  
...  

AbstractFunctional connectivity, as measured by resting-state fMRI, has proven a powerful method for studying brain systems in the context of behavior, development, and disease states. However, the relationship of functional connectivity to structural connectivity remains unclear. If functional connectivity relies on structural connectivity, then anatomical isolation of a brain region should eliminate functional connectivity with other brain regions. We tested this by measuring functional connectivity of the surgically disconnected temporal pole in resection patients (N=5; mean age 37; 2F, 3M). Functional connectivity was evaluated based on coactivation of whole-brain fMRI data with the average low-frequency BOLD signal from disconnected tissue in each patient. In sharp contrast to our prediction, we observed significant functional connectivity between the disconnected temporal pole and remote brain regions in each disconnection case. These findings raise important questions about the neural bases of functional connectivity measures derived from the fMRI BOLD signal.


Sign in / Sign up

Export Citation Format

Share Document