scholarly journals Effect of number of annual rings and tree ages on genomic predictive ability for solid wood properties of Norway spruce 

2020 ◽  
Author(s):  
Linghua Zhou(Former Corresponding Author) ◽  
Zhiqiang Chen ◽  
Lars Olsson ◽  
Thomas Grahn ◽  
Bo Karlsson ◽  
...  

Abstract BACKGROUND: Genomic selection (GS) or genomic prediction is considered as a promising approach to accelerate tree breeding and increase genetic gain by shortening breeding cycle, but the efforts to develop routines for operational breeding are so far limited. We investigated the predictive ability (PA) of GS based on 484 progeny trees from 62 half-sib families in Norway spruce (Picea abies (L.) Karst.) for wood density, modulus of elasticity (MOE) and microfibril angle (MFA) measured with SilviScan, as well as for measurements on standing trees by Pilodyn and Hitman instruments. RESULTS: GS predictive abilities were comparable with those based on pedigree-based prediction. Marker-based PAs were generally 25-30% higher for traits density, MFA and MOE measured with SilviScan than for their respective standing tree-based method which measured with Pilodyn and Hitman. Prediction accuracy (PC) of the standing tree-based methods were similar or even higher than increment core-based method. 78-95% of the maximal PAs of density, MFA and MOE obtained from coring to the pith at high age were reached by using data possible to obtain by drilling 3-5 rings towards the pith at tree age 10-12. CONCLUSIONS: This study indicates standing tree-based measurements is a cost-effective alternative method for GS. PA of GS methods were comparable with those pedigree-based prediction. The highest PAs were reached with at least 80-90% of the dataset used as training set. Density could be conducted at an earlier age than for MFA and MOE. Operational breeding can also be optimized by training the model at an earlier age or using 3 to 5 outermost rings at tree age 10 to 12 years, thereby shortening the cycle and reducing the impact on the tree.

BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Linghua Zhou ◽  
Zhiqiang Chen ◽  
Lars Olsson ◽  
Thomas Grahn ◽  
Bo Karlsson ◽  
...  

Abstract Background Genomic selection (GS) or genomic prediction is considered as a promising approach to accelerate tree breeding and increase genetic gain by shortening breeding cycle, but the efforts to develop routines for operational breeding are so far limited. We investigated the predictive ability (PA) of GS based on 484 progeny trees from 62 half-sib families in Norway spruce (Picea abies (L.) Karst.) for wood density, modulus of elasticity (MOE) and microfibril angle (MFA) measured with SilviScan, as well as for measurements on standing trees by Pilodyn and Hitman instruments. Results GS predictive abilities were comparable with those based on pedigree-based prediction. Marker-based PAs were generally 25–30% higher for traits density, MFA and MOE measured with SilviScan than for their respective standing tree-based method which measured with Pilodyn and Hitman. Prediction accuracy (PC) of the standing tree-based methods were similar or even higher than increment core-based method. 78–95% of the maximal PAs of density, MFA and MOE obtained from coring to the pith at high age were reached by using data possible to obtain by drilling 3–5 rings towards the pith at tree age 10–12. Conclusions This study indicates standing tree-based measurements is a cost-effective alternative method for GS. PA of GS methods were comparable with those pedigree-based prediction. The highest PAs were reached with at least 80–90% of the dataset used as training set. Selection for trait density could be conducted at an earlier age than for MFA and MOE. Operational breeding can also be optimized by training the model at an earlier age or using 3 to 5 outermost rings at tree age 10 to 12 years, thereby shortening the cycle and reducing the impact on the tree.


2020 ◽  
Author(s):  
Linghua Zhou ◽  
Zhiqiang Chen ◽  
Lars Olsson ◽  
Thomas Grahn ◽  
Bo Karlsson ◽  
...  

AbstractGenomic selection (GS) or genomic prediction is considered as a promising approach to accelerate tree breeding and increase genetic gain by shortening breeding cycle, but the efforts to develop routines for operational breeding are so far limited. We investigated the predictive ability (PA) of GS based on 484 progeny trees from 62 half-sib families in Norway spruce (Picea abies (L.) Karst.) for wood density, modulus of elasticity (MOE) and microfibril angle (MFA) measured with SilviScan, as well as for measurements on standing trees by Pilodyn and Hitman instruments. GS predictive abilities were comparable with those based on pedigree-based prediction. The highest PAs were reached with at least 80-90% of the dataset used as training set. Use of different statistical methods had no significant impact on the estimated PAs. We also compared the abilities to predict density, MFA and MOE of 19 year old trees with models trained on data from coring at different ages and to different depths into the stem. 78-95% of the maximal PAs obtained from coring to the pith at high age were reached by using data possible to obtain by drilling 3-5 rings towards the pith at tree age 10-12, thereby shortening the cycle and reducing the impact on the tree.


2020 ◽  
Author(s):  
Linghua Zhou ◽  
Zhiqiang Chen ◽  
Lars Olsson ◽  
Thomas Grahn ◽  
Bo Karlsson ◽  
...  

Abstract Genomic selection (GS) or genomic prediction is considered as a promising approach to accelerate tree breeding and increase genetic gain by shortening breeding cycle. We investigated the predictive ability (PA) of GS based on 484 progeny trees from 62 half-sib families in Norway spruce ( Picea abies (L.) Karst.) for wood density, modulus of elasticity (MOE) and microfibril angle (MFA) measured with SilviScan, as well as for measurements on standing trees by Pilodyn and Hitman instruments. GS predictive abilities (PA) were comparable with those based on pedigree-based selection. The highest PAs were reached with at least 80-90% of the dataset used as training set. Use of different statistical methods had no significant impact on the estimated PAs. We also compared the abilities to predict density, MFA and MOE of 19 year old trees with use of models trained on data from coring at different ages and to different depths into the stem. The comparison indicated that close to the maximal PAs can be reached at age 10-12 by drilling only half way (ringwise) towards the pith, thereby reducing the impact on the tree.


2010 ◽  
Vol 40 (8) ◽  
pp. 1550-1557 ◽  
Author(s):  
Michael S. Watt ◽  
Charles Sorensson ◽  
Dave J. Cown ◽  
Heidi S. Dungey ◽  
Robert Evans

Detailed radial measurements of wood properties, taken at breast height, were obtained from control pollinated seedlings and a selection of 13 year old radiata pine ( Pinus radiata D. Don) clones. Using these data the key objectives of this study were to determine (i) the magnitude of mean clonal variation in modulus of elasticity (MOE) and properties affecting MOE (density and microfibril angle (MFA)) and (ii) whether there is a significant age × clone interaction for these traits. All wood properties were significantly affected by the main and interactive effects of age and clone. There was a relatively linear increase in both MOE and density with tree age, while MFA declined linearly with tree age. Values of density and MOE diverged between the clonal extremes from age 3 to age 12. After diverging markedly up to age 6, differences in MFA between clonal extremes remained relatively constant to age 12. At age 12, values for density, MFA, and MOE varied between clonal extremes by, respectively, 194 kg·m–3 (465–659 kg·m–3), 11.3° (9.6–20.9°), and 11.2 GPa (10.4–21.6 GPa). The seedling material had a relatively intermediate ranking, across the age range, for all traits considered.


Holzforschung ◽  
2015 ◽  
Vol 69 (5) ◽  
pp. 581-586 ◽  
Author(s):  
Jun Tanabe ◽  
Akira Tamura ◽  
Futoshi Ishiguri ◽  
Yuya Takashima ◽  
Kazuya Iizuka ◽  
...  

Abstract Picea glehnii is one of the most important plantation species in Hokkaido, Japan. Basic density (BD) and microfibril angle (MFA) of the S2 layer in latewood tracheid in 16 full-sib families and their six parental clones planted in Hokkaido were examined to clarify among-family and clonal variations of wood properties and their inheritance from parents to offspring. Mean values of BD and MFA in full-sib families and parental clones were 0.36 and 0.35 g cm-3 and 16.1° and 10.7°, respectively. Estimated repeatabilities of BD and MFA in juvenile wood (jW) were higher than those in mature wood. In addition, larger genetic coefficient of variation was detected for jW, indicating that improvement of jW properties is important to Hokkaido’s tree breeding program. Parent-offspring correlation coefficients were positive and significant in all properties. These results suggest that the influence of parental clones on wood properties is inheritable to offspring. Moreover, there were no significant differences between reciprocal crosses of wood properties, suggesting that plus-tree clones with good wood properties can be used as either female or male parents for producing offspring. There is a possibility of improving wood properties in P. glehnii by crossing clones with desirable properties.


2011 ◽  
Vol 41 (7) ◽  
pp. 1422-1431 ◽  
Author(s):  
Michael S. Watt ◽  
Branislav Zoric ◽  
Mark O. Kimberley ◽  
Jonathan Harrington

Detailed radial measurements of wood properties at four heights (0, 1.4, 5, and 20 m) were taken from 24-year-old Pinus radiata D. Don growing at four final crop stockings (200, 350, 500, and 1100 stems·ha–1). Using these measurements, the objectives of the study were to examine pith-to-bark trends at several heights to (i) determine how stocking influenced modulus of elasticity (MoE), wood density, and microfibril angle (MFA), (ii) quantify the relations among these properties and age at different stocking levels, and (iii) develop a graphical model for MoE across the stocking range. The influence of stocking on all wood properties was primarily expressed through a highly significant interaction between age and stocking. Wood properties in the highest stocking treatment diverged from those in the lowest stocking treatment at tree age 5 to reach a maximum difference of 92 kg·m–3 (488 vs. 580 kg·m–3) at tree age 18 for density, –5.7° (29.2° vs. 23.5°) at tree age 10 for MFA, and 5.1 GPa (12.1 vs. 17.2 GPa) at tree age 20 years for MoE. Graphical predictions from the model show greatest gains in MoE at high final crop stocking to occur over the lower part of the stem.


2020 ◽  
Author(s):  
Moonil Kim ◽  
Nick Strigul ◽  
Elena Rovenskaya ◽  
Florian Kraxner ◽  
Woo-Kyun Lee

<p>The velocity and impact of climate change on forest appear to be site, environment, and tree species-specific. The primary objective of this research is to assess the changes in productivity of major temperate tree species in South Korea using terrestrial inventory and satellite remote sensing data. The area covered by each tree species was further categorized into either lowland forest (LLF) or high mountain forest (HMF) and investigated. We used the repeated Korean national forest inventory (NFI) data to calculate a stand-level annual increment (SAI). We then compared the SAI, a ground-based productivity measure, to MODIS net primary productivity (NPP) as a measure of productivity based on satellite imagery. In addition, the growth index of each increment core, which eliminated the effect of tree age on radial growth, was derived as an indicator of the variation of productivity by tree species over the past four decades. Based on these steps, we understand the species- and elevation-dependent dynamics. The secondary objective is to predict the forest dynamics under climate change using the Perfect Plasticity Approximation with Simple Biogeochemistry (PPA-SiBGC) model. The PPA-SiBGC is an analytically tractable model of forest dynamics, defined in terms of parameters for individual trees, including allometry, growth, and mortality. We estimated these parameters for the major species by using NFI and increment core data. We predicted forest dynamics using the following time-series metrics: Net ecosystem exchange, aboveground biomass, belowground biomass, C, N, soil respiration, and relative abundance. We then focus on comparing the impact of climate change on LLF and HMF. The results of our study can be used to develop climate-smart forest management strategies to ensure that both LLF and HMF continue to be resilient and continue to provide a wide range of ecosystem services in the Eastern Asian region.</p>


IAWA Journal ◽  
2013 ◽  
Vol 34 (4) ◽  
pp. 365-390 ◽  
Author(s):  
Sabine Rosner

Secondary xylem (wood) fulfills many of the functions required for tree survival, such as transport of water and nutrients, storage of water and assimilates, and mechanical support. The evolutionary process has optimized tree structure to maximize survival of the species, but has not necessarily optimized the wood properties needed for lumber. Under the impact of global warming, knowledge about structure-function relationships in tree trunks will become more and more important in order to prognosticate survival prospects of a species, individuals or provenances. Increasing our knowledge on functional wood anatomy can also provide valuable input for the development of reliable, fast, and at best quasi-non-destructive (e.g. wood coring of mature trunks) indirect screening techniques for drought susceptibility of woody species. This review gives an interdisciplinary update of our present knowledge on hydraulic and biomechanical determinants of wood structure within and among trunks of Norway spruce (Picea abies (L.) Karst.), which is one of Europe’s economically most important forest tree species. It summarizes what we know so far on 1) withinring variability of hydraulic and mechanical properties, 2) structure-function relationships in mature wood, 3) mechanical and hydraulic demands and their tradeoffs along tree trunks, and 4) the quite complex wood structure of the young trunk associated with mechanical demands of a small tree. Due to its interdisciplinary nature this review is addressed to physiologists, foresters, tree breeders and wood technologists.


2019 ◽  
Vol 49 (7) ◽  
pp. 810-818 ◽  
Author(s):  
Linghua Zhou ◽  
Zhiqiang Chen ◽  
Sven-Olof Lundqvist ◽  
Lars Olsson ◽  
Thomas Grahn ◽  
...  

A two-generation pedigree involving 519 Norway spruce (Picea abies (L.) Karst.) plus trees (at clonal archives) and their open-pollinated (OP) progenies was studied with the aim to evaluate the potential of plus-tree selection based on phenotype data scored on the plus trees. Two wood properties (wood density and modulus of elasticity, MOE) and one fiber property (microfibril angle, MFA) were measured with a SilviScan instrument on samples from one ramet per plus tree and 12 OP progenies per plus tree (total of 6288 trees). Three ramets per plus tree and their OP progenies were also assessed for Pilodyn penetration depth and Hitman acoustic velocity, which were used to estimate MOE. The narrow-sense heritability (h2) estimates based on parent–offspring regression were marginally higher than those based on half-sib correlation when three ramets per plus tree were included. For SilviScan data, estimates of the correlation between half-sib, progeny-based breeding values (BVs) and plus-tree phenotypes, as well as repeatability estimates, were highest for wood density, followed by MOE and MFA. Considering that the repeatability estimates from the clonal archive trees were higher than any h2 estimate, selection of the best clones from clonal archives would be an effective alternative.


Horticulturae ◽  
2020 ◽  
Vol 6 (4) ◽  
pp. 82
Author(s):  
Amandeep Kaur ◽  
Louise Ferguson ◽  
Niels Maness ◽  
Becky Carroll ◽  
William Reid ◽  
...  

Pecan is native to the United States. The US is the world’s largest pecan producer with an average yearly production of 250 to 300 million pounds; 80 percent of the world’s supply. Georgia, New Mexico, Texas, Arizona, Oklahoma, California, Louisiana, and Florida are the major US pecan producing states. Pecan trees frequently suffer from spring freeze at bud break and bloom as the buds are quite sensitive to freeze damage. This leads to poor flower and nut production. This review focuses on the impact of spring freeze during bud differentiation and flower development. Spring freeze kills the primary terminal buds, the pecan tree has a second chance for growth and flowering through secondary buds. Unfortunately, secondary buds have less bloom potential than primary buds and nut yield is reduced. Spring freeze damage depends on severity of the freeze, bud growth stage, cultivar type and tree age, tree height and tree vigor. This review discusses the impact of temperature on structure and function of male and female reproductive organs. It also summarizes carbohydrate relations as another factor that may play an important role in spring growth and transition of primary and secondary buds to flowers.


Sign in / Sign up

Export Citation Format

Share Document