Proteomic analysis demonstrated transcription factor YRR1 gene deletion in Saccharomyces cerevisiae enhances its resistance to vanillin through the upregulation of transcriptional activator Haa1, coactivator Mbf1, and proteasome assembly chaperone Tma17 expression
Abstract Background: Vanillin is one of the major phenolic inhibitors in Saccharomyces cerevisiae for cellulosic ethanol production. Deleting transcription factor gene YRR1 improves vanillin resistance by promoting some translation-related processes that were confirmed at the transcription level in our previous studies. However, the known genes regulated by Yrr1 are not related to translation process. Therefore, in this work, we investigated the effects of proteomic changes on vanillin stress and YRR1 deletion to provide different perspectives from transcriptome analysis for comprehending the mechanisms of YRR1 deletion in yeast protective response to vanillin.Results: In wild-type cells, vanillin reduced the numbers of ribosomal proteins quantities and thereby inhibited cells’ translation. YRR1 deletion changed the quantities of 121 proteins which have no overlaps with transcriptomic changes. Of 112 proteins were up-regulated; 48 of 112 up-regulated proteins are involved in stress response, translational and basal transcriptional regulation. Fermentation data showed that the overexpression of HAA1, MBF1, and TMA17, which encode transcriptional activator, coactivator, and proteasome assembly chaperone, respectively, enhanced resistance to vanillin in S. cerevisiae. Conclusions: These results showed how YRR1 deletion increase vanillin resistance at protein level. This may advance our understanding of molecular mechanisms for YRR1 deletion to protect yeast from vanillin stress and offer novel targets of genetic engineering for designing inhibitor-resistant ethanologenic yeast strains.