scholarly journals Structural and functional insights into the Diabrotica virgifera virgifera ATP-binding cassette transporter gene family

2019 ◽  
Author(s):  
Folukemi Adedipe ◽  
Nathaniel Grubbs ◽  
Brad Coates ◽  
Brian Wiegmman ◽  
Marce Lorenzen

Abstract Background The western corn rootworm, Diabrotica virgifera virgifera , is a pervasive pest of cultivated maize in North America and Europe, which has adapted to survive exposure to multiple insecticidal agents. Due to their role in insecticide transport, we sought to identify members of the ATP-binding cassette (ABC) transporter family in D. v. virgifera using a transcriptomics approach.Results In this study, 65 putative D. v. virgifera ABC ( Dvv ABC) transporters were identified within a combined transcriptome assembly generated from embryonic, larval, adult male, and adult female RNA-sequence libraries. Phylogenetic analysis placed the deduced amino-acid sequences of the Dvv ABC transporters into eight subfamilies (A to H). Of these, eight shared structural and functional conservation with Tribolium castaneum ABC transporter orthologs known to exhibit overt RNA interference (RNAi) knockdown phenotypes. Interestingly, depletion of DvvABCB_19147 and DvvABCG_3712 transcripts in adult females produced detrimental reproductive and developmental phenotypes (egg-laying or -hatching defects), demonstrating the potential of these genes as targets for RNAi-mediated insect control tactics.Conclusions By combining sequence data from four libraries covering three distinct life stages, we have produced a relatively comprehensive de novo transcriptome assembly for D. v. virgifera . Moreover, we have identified 65 members of the ABC transporter family, and provided the first insights into the developmental and physiological roles of ABC transporters in this pest species.

2019 ◽  
Author(s):  
Folukemi Adedipe ◽  
Nathaniel Grubbs ◽  
Brad Coates ◽  
Brian Wiegmman ◽  
Marce Lorenzen

Abstract Background The western corn rootworm, Diabrotica virgifera virgifera , is a pervasive pest of cultivated maize in North America and Europe, which has adapted to survive exposure to multiple insecticidal agents. Due to their role in insecticide transport, we sought to identify members of the ATP-binding cassette (ABC) transporter family in D. v. virgifera using a transcriptomics approach.Results In this study, 65 putative D. v. virgifera ABC ( Dvv ABC) transporters were identified within a combined transcriptome assembly generated from embryonic, larval, adult male, and adult female RNA-sequence libraries. Phylogenetic analysis placed the deduced amino-acid sequences of the Dvv ABC transporters into eight subfamilies (A to H). Of these, eight shared structural and functional conservation with Tribolium castaneum ABC transporter orthologs known to exhibit overt RNA interference (RNAi) knockdown phenotypes. Interestingly, depletion of DvvABCB_19147 and DvvABCG_3712 transcripts in adult females produced detrimental reproductive and developmental phenotypes (egg-laying or -hatching defects), demonstrating the potential of these genes as targets for RNAi-mediated insect control tactics.Conclusions By combining sequence data from four libraries covering three distinct life stages, we have produced a relatively comprehensive de novo transcriptome assembly for D. v. virgifera . Moreover, we have identified 65 members of the ABC transporter family, and provided the first insights into the developmental and physiological roles of ABC transporters in this pest species.


BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Folukemi Adedipe ◽  
Nathaniel Grubbs ◽  
Brad Coates ◽  
Brian Wiegmman ◽  
Marcé Lorenzen

Abstract Background The western corn rootworm, Diabrotica virgifera virgifera, is a pervasive pest of maize in North America and Europe, which has adapted to current pest management strategies. In advance of an assembled and annotated D. v. virgifera genome, we developed transcriptomic resources to use in identifying candidate genes likely to be involved in the evolution of resistance, starting with members of the ATP-binding cassette (ABC) transporter family. Results In this study, 65 putative D. v. virgifera ABC (DvvABC) transporters were identified within a combined transcriptome assembly generated from embryonic, larval, adult male, and adult female RNA-sequence libraries. Phylogenetic analysis placed the deduced amino-acid sequences of the DvvABC transporters into eight subfamilies (A to H). To supplement our sequence data with functional analysis, we identified orthologs of Tribolium castaneum ABC genes which had previously been shown to exhibit overt RNA interference (RNAi) phenotypes. We identified eight such D. v. virgifera genes, and found that they were functionally similar to their T. castaneum counterparts. Interestingly, depletion of DvvABCB_39715 and DvvABCG_3712 transcripts in adult females produced detrimental reproductive and developmental phenotypes, demonstrating the potential of these genes as targets for RNAi-mediated insect control tactics. Conclusions By combining sequence data from four libraries covering three distinct life stages, we have produced a relatively comprehensive de novo transcriptome assembly for D. v. virgifera. Moreover, we have identified 65 members of the ABC transporter family and provided the first insights into the developmental and physiological roles of ABC transporters in this pest species.


2019 ◽  
Author(s):  
Folukemi Adedipe ◽  
Nathaniel Grubbs ◽  
Brad Coates ◽  
Brian Wiegmman ◽  
Marce Lorenzen

Abstract Background The western corn rootworm, Diabrotica virgifera virgifera, is a pervasive pest of cultivated maize in North America and Europe, which has adapted to survive exposure to multiple insecticidal agents. Due to their role in insecticide transport, we sought to identify members of the ATP-binding cassette (ABC) transporter family in D. v. virgifera using a transcriptomics approach. Results In this study, 65 putative D. v. virgifera ABC (DvvABC) transporters were identified within a combined transcriptome assembly generated from embryo, larval, adult male, and adult female RNA-sequence libraries. Phylogenetic analysis placed the deduced amino-acid sequences of the DvvABC transporters into eight subfamilies (A to H). Of these, eight shared structural and functional conservation with Tribolium castaneum ABC transporter orthologs known to exhibit overt RNA interference (RNAi) knockdown phenotypes. Interestingly, depletion of DvvABCB_19147 and DvvABCG_3712 transcripts in adult females produced detrimental reproductive and developmental phenotypes (egg-laying or -hatching defects), demonstrating the potential of these genes as targets for RNAi-mediated insect control tactics. Conclusions By combining sequence data from four libraries covering three distinct life stages, we have produced a relatively comprehensive de novo transcriptome assembly for D. v. virgifera. Moreover, we have identified 65 members of the ABC transporter family, and provided the first insights into the developmental and physiological roles of ABC transporters in this pest species.


2019 ◽  
Vol 20 (6) ◽  
pp. 1409 ◽  
Author(s):  
Qiyi He ◽  
Zhentian Yan ◽  
Fengling Si ◽  
Yong Zhou ◽  
Wenbo Fu ◽  
...  

background: The ATP-binding cassette (ABC) transporters family is one of the largest families of membrane proteins existing in all living organisms. Pyrethroid resistance has become the largest unique obstacle for mosquito control worldwide. ABC transporters are thought to be associated with pyrethroid resistance in some agricultural pests, but little information is known for mosquitoes. Herein, we investigated the diversity, location, characteristics, phylogenetics, and evolution of ABC transporter family of genes in the Anopheles sinensis genome, and identified the ABC transporter genes associated with pyrethroid resistance through expression profiles using RNA-seq and qPCR. Results: 61 ABC transporter genes are identified and divided into eight subfamilies (ABCA-H), located on 22 different scaffolds. Phylogenetic and evolution analyses with ABC transporters of A. gambiae, Drosophila melanogaster, and Homo sapiens suggest that the ABCD, ABCG, and ABCH subfamilies are monophyly, and that the ABCC and ABCG subfamilies have experienced a gene duplication event. Both RNA-seq and qPCR analyses show that the AsABCG28 gene is uniquely significantly upregulated gene in all three field pyrethroid-resistant populations (Anhui, Chongqing, and Yunnan provinces) in comparison with a laboratory-susceptible strain from Jiangsu province. The AsABCG28 is significantly upregulated at 12-h and 24-h after deltamethrin exposure in three-day-old female adults. Conclusion: This study provides the information frame for ABC transporter subfamily of genes, and lays an important basis for the better understanding and further research of ABC transporter function in insecticide toxification. The AsABCG28 gene is associated with pyrethroid detoxification, and it functions at later period in the detoxification process for xenobiotics transportation.


2016 ◽  
Vol 283 (1826) ◽  
pp. 20152838 ◽  
Author(s):  
Ryan T. Paitz ◽  
Syed Abbas Bukhari ◽  
Alison M. Bell

Offspring from females that experience stressful conditions during reproduction often exhibit altered phenotypes and many of these effects are thought to arise owing to increased exposure to maternal glucocorticoids. While embryos of placental vertebrates are known to regulate exposure to maternal glucocorticoids via placental steroid metabolism, much less is known about how and whether egg-laying vertebrates can control their steroid environment during embryonic development. We tested the hypothesis that threespine stickleback ( Gasterosteus aculeatus ) embryos can regulate exposure to maternal steroids via active efflux of maternal steroids from the egg. Embryos rapidly (within 72 h) cleared intact steroids, but blocking ATP-binding cassette (ABC) transporters inhibited cortisol clearance. Remarkably, this efflux of cortisol was sufficient to prevent a transcriptional response of embryos to exogenous cortisol. Taken together, these findings suggest that, much like their placental counterparts, developing fish embryos can actively regulate their exposure to maternal cortisol. These findings highlight the fact that even in egg-laying vertebrates, the realized exposure to maternal steroids is mediated by both maternal and embryonic processes and this has important implications for understanding how maternal stress influences offspring development.


2019 ◽  
Vol 20 (13) ◽  
pp. 3178 ◽  
Author(s):  
Yu Ran Lee ◽  
Hee Kyoung Joo ◽  
Eun Ok Lee ◽  
Hyun Sil Cho ◽  
Sunga Choi ◽  
...  

Acetylation of nuclear apurinic/apyrimidinic endonuclease-1/redox factor-1 (APE1/Ref-1) is associated with its extracellular secretion, despite the lack of an N-terminal protein secretion signal. In this study, we investigated plasma membrane targeting and translocation of APE1/Ref-1 in HEK293T cells with enhanced acetylation. While APE1/Ref-1 targeting was not affected by inhibition of the endoplasmic reticulum/Golgi-dependent secretion, its secretion was reduced by inhibitors of ATP-binding cassette (ABC) transporters, and siRNA-mediated down-regulation of ABC transporter A1. The association between APE1/Ref-1 and ABCA1 transporter was confirmed by proximal ligation assay and immunoprecipitation experiments. An APE1/Ref-1 construct with mutated acetylation sites (K6/K7R) showed reduced co-localization with ABC transporter A1. Exposure of trichostatin A (TSA) induced the acetylation of APE1/Ref-1, which translocated into membrane fraction. Taken together, acetylation of APE1/Ref-1 is considered to be necessary for its extracellular targeting via non-classical secretory pathway using the ABCA1 transporter.


2006 ◽  
Vol 52 (2) ◽  
pp. 310-313 ◽  
Author(s):  
Thomas Langmann ◽  
Richard Mauerer ◽  
Gerd Schmitz

Abstract Background: ATP-binding cassette (ABC) transporters cause various diseases and regulate many physiologic processes, such as lipid homeostasis, iron transport, and immune mechanisms. Several ABC transporters are involved in bile acid, phospholipid, and sterol transport, and their expression is itself controlled by lipids. In addition, ABC proteins mediate drug export in tumor cells and promote the development of multidrug resistance. Methods: We created an ABC Transporter TaqMan Low-Density Array based on an Applied Biosystems 7900HT Micro Fluidic Card. We used a 2-μL reaction well with 2 ng of sample. To evaluate this method for lipidomic research and to characterize expression patterns of ABC transporters in cells relevant for atherosclerosis research, we monitored mRNA expression in human primary monocytes, in vitro–differentiated macrophages, and cells stimulated with the liver-X-receptor and retinoid-X-receptor agonists T0901317 and 9-cis retinoic acid, mimicking sterol loading. Results: The method enabled simultaneous analysis of 47 human ABC transporters and the reference gene 18S rRNA in 2 replicates of 4 samples per run. Conclusions: The new system uses only 2 ng of sample and small volumes of reagent, and the precaptured primers and probes avoided labor-intensive pipetting steps. The ABC Transporter TaqMan Low-Density Array may be a useful tool to monitor dysregulated ABC transporter mRNA profiles in human lipid disorders and cancer-related multidrug resistance and to analyze the pharmacologic and metabolic regulation of ABC transporter expression important for drug development in large-scale screening approaches.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Awdhesh Kumar Mishra ◽  
Jinhee Choi ◽  
Muhammad Fazle Rabbee ◽  
Kwang-Hyun Baek

ATP-binding cassette (ABC) transporters constitute one of the largest gene families in all living organisms, most of which mediate transport across biological membranes by hydrolyzing ATP. However, detailed studies of ABC transporter genes in the important oil crop, soybean, are still lacking. In the present study, we carried out genome-wide identification and phylogenetic and transcriptional analyses of the ABC gene family in G. max. A total of 261 G. max ABC (GmABCs) genes were identified and unevenly localized onto 20 chromosomes. Referring to protein-domain orientation and phylogeny, the GmABC family could be classified into eight (ABCA-ABCG and ABCI) subfamilies and ABCG were the most abundantly present. Further, investigation of whole genome duplication (WGD) signifies the role of segmental duplication in the expansion of the ABC transporter gene family in soybean. The Ka/Ks ratio indicates that several duplicated genes are governed by intense purifying selection during evolution. In addition, in silico expression analysis based on RNA-sequence using publicly available database revealed that ABC transporters are differentially expressed in tissues and developmental stages and in dehydration. Overall, we provide an extensive overview of the GmABC transporter gene family and it promises the primary basis for the study in development and response to dehydration tolerance.


2002 ◽  
Vol 70 (9) ◽  
pp. 5036-5044 ◽  
Author(s):  
G. M. S. Rosinha ◽  
Daniela A. Freitas ◽  
Anderson Miyoshi ◽  
Vasco Azevedo ◽  
Eleonora Campos ◽  
...  

ABSTRACT Brucella abortus is a facultative intracellular bacterial pathogen that causes abortion in domestic animals and undulant fever in humans. The mechanism of virulence of Brucella spp. is not fully understood yet. Furthermore, genes that allow Brucella to reach the intracellular niche and to interact with host cells need to be identified. Using the genomic survey sequence (GSS) approach, we identified the gene encoding an ATP-binding cassette (ABC) transporter of B. abortus strain S2308. The deduced amino acid sequence encoded by this gene exhibited 69 and 67% identity with the sequences of the ABC transporters encoded by the exsA genes of Rhizobium meliloti and Mesorhizobium loti, respectively. Additionally, B. abortus ExsA, like R. meliloti and M. loti ExsA, possesses ATP-binding motifs and the ABC signature domain features of a typical ABC transporter. Furthermore, ortholog group analysis placed B. abortus ExsA in ortholog group 6 of ABC transporters more likely to be involved in bacterial pathogenesis. In R. meliloti, ExsA is an exopolysaccharide transporter essential for alfalfa root nodule invasion and establishment of infection. To test the role of ExsA in Brucella pathogenesis, an exsA deletion mutant was constructed. Replacement of the wild-type exsA by recombination was demonstrated by Southern blot analysis of Brucella genomic DNA. Decreased survival in mice of the Brucella ΔexsA mutant compared to the survival of parental strain S2308 demonstrated that ExsA is critical for full bacterial virulence. Additionally, the B. abortus exsA deletion mutant was used as a live vaccine. Challenge experiments revealed that the exsA mutant strain induced superior protective immunity in BALB/c mice compared to the protective immunity induced by strain S19 or RB51.


2013 ◽  
Vol 12 (12) ◽  
pp. 1619-1628 ◽  
Author(s):  
Sanjoy Paul ◽  
Daniel Diekema ◽  
W. Scott Moye-Rowley

ABSTRACTIn yeast cells such as those ofSaccharomyces cerevisiae, expression of ATP-binding cassette (ABC) transporter proteins has been found to be increased and correlates with a concomitant elevation in azole drug resistance. In this study, we investigated the roles of twoAspergillus fumigatusproteins that share high sequence similarity withS. cerevisiaePdr5, an ABC transporter protein that is commonly overproduced in azole-resistant isolates in this yeast. The twoA. fumigatusgenes encoding the ABC transporters sharing the highest sequence similarity toS. cerevisiaePdr5 are calledabcAandabcBhere. We constructed deletion alleles of these two different ABC transporter-encoding genes in three different strains ofA. fumigatus. Loss ofabcBinvariably elicited increased azole susceptibility, whileabcAdisruption alleles had variable phenotypes. Specific antibodies were raised to both AbcA and AbcB proteins. These antisera allowed detection of AbcB in wild-type cells, while AbcA could be visualized only when overproduced from thehspApromoter inA. fumigatus. Overproduction of AbcA also yielded increased azole resistance. Green fluorescent protein fusions were used to provide evidence that both AbcA and AbcB are localized to the plasma membrane inA. fumigatus. Promoter fusions to firefly luciferase suggested that expression of both ABC transporter-encoding genes is inducible by azole challenge. Virulence assays implicated AbcB as a possible factor required for normal pathogenesis. This work provides important new insights into the physiological roles of ABC transporters in this major fungal pathogen.


Sign in / Sign up

Export Citation Format

Share Document