scholarly journals Effects of Dedifferentiated Fat Cells on Neurogenic Differentiation and Cell Proliferation in Neuroblastoma Cells

Author(s):  
Ayano Hidaka ◽  
Shota Uekusa ◽  
Takashi Hosokawa ◽  
Hide Kaneda ◽  
Tomohiko Kazama ◽  
...  

Abstract Recent reports demonstrated that mesenchymal stem cells (MSCs) can induce differentiation of neuroblastoma (NB) cells. Dedifferentiated fat cells (DFAT) and MSCs have similar properties. The present study investigated whether DFAT can induce NB cell differentiation and suppress cell proliferation. DFAT was obtained from mature adipocytes isolated from adipose tissue from a ceiling culture. NB cells were cultured in a medium with/without DFAT, and subsequently in a DFAT-conditioned medium (CM) with/without phosphatidylinositol 3 kinase (PI3K) inhibitor. Length of neurites was measured, and the mRNA expression levels of the neurofilament (NF) and tubulin beta III (TUBβ3) were assessed using quantitative real-time reverse transcription polymerase chain reaction. Cell viability was assessed by the water-soluble tetrazolium salt-1 assay. NB cells cultured with DFAT elongated the neurites and upregulated the expression of NF and Tubβ3 compared with the control. However, NB cells cultured in DFAT-CM demonstrated increased cell viability compared with the control. NB cells cultured with DFAT-CM and PI3K inhibitor suppressed cell viability and demonstrated increased neurite length and expression and upregulation of Tubβ3. Therefore, the combined use of DFAT-CM and PI3K inhibitors suppresses the proliferation of NB cells and induces their differentiation. DFAT may offer new insights into therapeutic approaches in NB.

Cells ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 775 ◽  
Author(s):  
Yingying Cui ◽  
Mengfan Zhang ◽  
Changsen Leng ◽  
Tjasso Blokzijl ◽  
Bernadien H. Jansen ◽  
...  

Intestinal fibrosis is a common complication of inflammatory bowel disease. So far, there is no safe and effective drug for intestinal fibrosis. Pirfenidone is an anti-fibrotic compound available for the treatment of idiopathic pulmonary fibrosis. Here, we explored the anti-proliferative and anti-fibrotic properties of pirfenidone on primary human intestinal fibroblasts (p-hIFs). p-hIFs were cultured in the absence and presence of pirfenidone. Cell proliferation was measured by a real-time cell analyzer (xCELLigence) and BrdU incorporation. Cell motility was monitored by live cell imaging. Cytotoxicity and cell viability were analyzed by Sytox green, Caspase-3 and Water Soluble Tetrazolium Salt-1 (WST-1) assays. Gene expression of fibrosis markers was determined by quantitative reverse transcription PCR (RT-qPCR). The mammalian target of rapamycin (mTOR) signaling was analyzed by Western blotting and type I collagen protein expression additionally by immunofluorescence microscopy. Pirfenidone dose-dependently inhibited p-hIF proliferation and motility, without inducing cell death. Pirfenidone suppressed mRNA levels of genes that contribute to extracellular matrix production, as well as basal and TGF-β1-induced collagen I protein production, which was associated with inhibition of the rapamycin-sensitive mTOR/p70S6K pathway in p-hIFs. Thus, pirfenidone inhibits the proliferation of intestinal fibroblasts and suppresses collagen I production through the TGF-β1/mTOR/p70S6K signaling pathway, which might be a novel and safe anti-fibrotic strategy to treat intestinal fibrosis.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Xi Yang ◽  
Yaping Zhang ◽  
Hong Liu ◽  
Zenghua Lin

Multiple myeloma is the second most prevalent type of blood cancer, representing approximately 1% of all cancers and 2% of all cancer deaths. There is therefore a strong need to identify critical targets in multiple myeloma neoplasia and progression. Cancerous inhibitor of PP2A (CIP2A) is a human oncoprotein that regulates cancer cell viability and anchorage-independent growth and induces apoptosis. The present study investigated CIP2A function in the human multiple myeloma cell lines RPMI-8226 and NCI-H929 to determine whether it can serve as a potential therapeutic target.CIP2Awas silenced in the cells by transfection of short interfering RNA and cell proliferation and apoptosis were evaluated by a tetrazolium salt-based assay and flow cytometry, respectively.CIP2Aknockdown inhibited proliferation and induced apoptosis in RPMI-8226 and NCI-H929 cells and decreased the phosphorylation of phosphoinositide 3-kinase (PI3K) p85, AKT1, and mammalian target of rapamycin (mTOR) without affecting total protein levels. Treatment ofCIP2A-depletion cells with insulin-like growth factor 1 decreased the effects ofCIP2Ainhibition on cell viability and apoptosis. These results indicate that CIP2A modulates myeloma cell proliferation and apoptosis via PI3K/AKT/mTOR signaling and suggest that it can potentially serve as a drug target for the treatment of multiple myeloma.


Author(s):  
Orsolya Láng ◽  
Krisztina S. Nagy ◽  
Julia Láng ◽  
Katalin Perczel-Kovách ◽  
Anna Herczegh ◽  
...  

Abstract Objectives Periodontal ligament stem cells (PDLSCs) have an underlined significance as their high proliferative capacity and multipotent differentiation provide an important therapeutic potential. The integrity of these cells is frequently disturbed by the routinely used irrigative compounds applied as periodontal or endodontic disinfectants (e.g., hydrogen peroxide (H2O2) and chlorhexidine (CHX)). Our objectives were (i) to monitor the cytotoxic effect of a novel dental irrigative compound, chlorine dioxide (ClO2), compared to two traditional agents (H2O2, CHX) on PDLSCs and (ii) to test whether the aging factor of PDLSC cultures determines cellular responsiveness to the chemicals tested. Methods Impedimetry (concentration-response study), WST-1 assays (WST = water soluble tetrazolium salt), and morphology analysis were performed to measure changes in cell viability induced by the 3 disinfectants; immunocytochemistry of stem cell markers (STRO-1, CD90, and CD105) measured the induced mesenchymal characteristics. Results Cell viability experiments demonstrated that the application of ClO2 does not lead to a significant decrease in viability of PLDSCs in concentrations used to kill microbes. On the contrary, traditional irrigants, H2O2, and CHX are highly toxic on PDLSCs. Aging of PLDSC cultures (passages 3 vs. 7) has characteristic effects on their responsiveness to these agents as the increased expression of mesenchymal stem cell markers turns to decreased. Conclusions and clinical relevance While the active ingredients of mouthwash (H2O2, CHX) applied in endodontic or periodontitis management have a serious toxic effect on PDLSCs, the novel hyperpure ClO2 is less toxic providing an environment favoring dental structure regenerations during disinfectant interventions.


1999 ◽  
Vol 36 (2) ◽  
pp. 47-50 ◽  
Author(s):  
Hideyuki Tominaga ◽  
Munetaka Ishiyama ◽  
Fumio Ohseto ◽  
Kazumi Sasamoto ◽  
Tomoyuki Hamamoto ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 257
Author(s):  
Sangbae Park ◽  
Jae Eun Kim ◽  
Jinsub Han ◽  
Seung Jeong ◽  
Jae Woon Lim ◽  
...  

The 3D-printed bioactive ceramic incorporated Poly(ε-caprolactone) (PCL) scaffolds show great promise as synthetic bone graft substitutes. However, 3D-printed scaffolds still lack adequate surface properties for cells to be attached to them. In this study, we modified the surface characteristics of 3D-printed poly(ε-caprolactone)/hydroxyapatite scaffolds using O2 plasma and sodium hydroxide. The surface property of the alkaline hydrolyzed and O2 plasma-treated PCL/HA scaffolds were evaluated using field-emission scanning microscopy (FE-SEM), Alizarin Red S (ARS) staining, and water contact angle analysis, respectively. The in vitro behavior of the scaffolds was investigated using human dental pulp-derived stem cells (hDPSCs). Cell proliferation of hDPSCs on the scaffolds was evaluated via immunocytochemistry (ICC) and water-soluble tetrazolium salt (WST-1) assay. Osteogenic differentiation of hDPSCs on the scaffolds was further investigated using ARS staining and Western blot analysis. The result of this study shows that alkaline treatment is beneficial for exposing hydroxyapatite particles embedded in the scaffolds compared to O2 plasma treatment, which promotes cell proliferation and differentiation of hDPSCs.


1998 ◽  
Vol 26 (3) ◽  
pp. 331-342
Author(s):  
Xavier Ponsoda ◽  
Maria Jose Gómez-Lechón ◽  
Jose V. Castell

The application of viability criteria (MTT and XTT tests) to monolayer cultures and immobilised cells in three-dimensional systems was investigated in order to assess cell viability and cell proliferation. The suitability and accuracy of these tests were compared with the conventional criteria (cellular protein and DNA content) used in monolayer cultures for the same purpose. The colorimetric assay based on the metabolic reduction of the tetrazolium salt XTT to a water-soluble formazan proved to be very useful, rapid and sensitive. This automated spectrophotometric enzymatic method, due to its lack of toxicity, also permits repeated nondestructive assays on a single cellular culture for the long-term monitoring of cytotoxicity, cell survival and cell proliferation, and can be performed in 96-well plates with minimal handling. This method could offer a solution for cellular density evaluation in complex cell cultures that do not permit visual examination; it is also the best choice for protein-based, three-dimensional systems such as collagen gels.


2009 ◽  
Vol 23 (4) ◽  
pp. 585-585 ◽  
Author(s):  
Anna V. Hoekstra ◽  
Elizabeth C. Sefton ◽  
Emily Berry ◽  
Zhenxiao Lu ◽  
Jennifer Hardt ◽  
...  

ABSTRACT Context Progesterone has been associated with promoting growth of uterine leiomyomas. The mechanisms involved remain unclear. Objective In this study we investigated the activation of the AKT pathway and its downstream effectors, GSK3b and FOXO1 by progesterone as a mechanism of proliferation and survival of leiomyoma cells. Inhibitors of the AKT pathway were used to demonstrate the role of PI3K, AKT and FOXO1 in contributing to cell proliferation and apoptosis. Results Treatment of leiomyoma cells with R5020 over a period of 72h resulted in higher cell numbers compared to untreated cells. When cells were treated with 100nM R5020 for 1h and 24h, the levels of phospho(Ser 473)-AKT increased. This increase was inhibited when cells were co-treated with RU486. Treatment of leiomyoma cells with a PI3K inhibitor, LY294 dramatically decreased levels of phospho(Ser 473)-AKT, despite R5020 treatment. In addition to increased phospho(Ser 473)-AKT levels, R5020 treatment resulted in an increase in phospho(Ser 256)-FOXO1 and phospho-GSK3b. Inhibition of AKT using API-59 decreased proliferation and cell viability even in the presence of R5020. Higher concentrations of API-59 induced apoptosis of leiomyoma cells even in the presence of R5020. Psammaplysene A increased nuclear FOXO1 levels and did not affect cell proliferation but induced apoptosis of leiomyoma cells. Conclusions The progestin, R5020, can rapidly activate the AKT pathway. Inhibition of the AKT pathway inhibits cell proliferation and promotes apoptosis of leiomyoma cells.


Materials ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3419 ◽  
Author(s):  
Boldbayar Ganbold ◽  
Seong-Joo Heo ◽  
Jai-Young Koak ◽  
Seong-Kyun Kim ◽  
Jaejin Cho

Recently, the selective laser melting (SLM) method of manufacturing three dimensional (3D) dental prosthetics by applying a laser to metal powder has been widely used in the field of dentistry. This study investigated human adipose derived stem cell (hADSC) behavior on a 3D printed cobalt-chrome (Co-Cr) alloy and its surface characteristics and compared them those of a nickel-chrome (Ni-Cr) alloy. Alloys were divided into four groups according to the material and manufacturing methods. Co-Cr disks were manufactured with three different methods: a conventional casting method, a metal milling method, and an SLM method. Ni-Cr disks were manufactured with a conventional casting method. The surface roughness and compositions of the disks were assessed. hADSCs were then cultured on the disks. Cell morphologies on the disks were analyzed by a field emission scanning electron microscope (FE-SEM). Cell proliferation was assessed with a bromodeoxyuridine (BrdU) assay kit. Cell viability was evaluated with a water-soluble tetrazolium salt (WST) assay kit. There were no differences in surface roughness between all groups. The cells were well attached to the disks, and morphologies of the cells were similar. The cell proliferation and viability of the Ni-Cr disks were significantly lower than the other groups. However, the Co-Cr disks showed no differences in their different fabricating methods. In conclusion, the biocompatibility of 3D printed Co-Cr alloys showed comparable results compared to that of the conventional casting method, and these alloys were more biocompatible than Ni-Cr alloys.


2021 ◽  
Vol 9 (3) ◽  
Author(s):  
Ludmil Benov

Reduction of the water-soluble tetrazolium salt 3-(4,5-dimethylthiazol)-2,5 diphenyl-tetrazolium bromide (MTT) to purple, water-insoluble formazan is commonly used for assessment of cell viability and proliferation. Spectrophotometric detection of formazan requires its solubilization.


Sign in / Sign up

Export Citation Format

Share Document