scholarly journals Evaluation of Deformation of Adjacent Buildings With Different Foundation Types Caused by Foundation Pit Excavation Under Combined Support of Isolation Pile and Diaphragm Wall

Author(s):  
Shaokun Ma ◽  
Fapai Tian ◽  
Zhen Huang ◽  
Hu Lu ◽  
Xiaoxi Fu ◽  
...  

Abstract The process of excavation and unloading of a deep subway foundation pit will cause deformation of the surrounding buildings. There are significant differences in building deformation due to different methods of supporting the foundation pit and building foundation forms. This study takes the deep foundation pit project of the station as an example to investigate this difference. A three-dimensional numerical finite element model of a deep foundation pit has been established that considers different types of building foundations (independent foundation, box foundation, and pile foundation). The sensitivity of the two supporting methods of the diaphragm wall and the combined support of isolation pile and diaphragm wall regarding the maximum settlement value of the building, the horizontal inclination value, the slope angle, and the foundation angular distortions were analyzed. Finally, the sensitivity of the length of the isolated pile to the maximum settlement value and the horizontal displacement value of different types of building foundations are discussed. The results show that the combined support method of isolation piles and diaphragm walls has the highest supporting efficiency (93.5% of independent foundations and 42.3% of box foundations) for angular distortions of shallow foundation buildings. The efficiency of pile foundation support is the lowest (31.4%). For the combined support method of isolation piles and diaphragm walls, the maximum settlement value, and the value of horizontal displacement of the building will decrease with increasing the length of isolation pile. When the depth of isolation pile is greater than 24 m, the settlement deceleration rate of the independent foundation and the pile foundation slows down; when the depth of isolation pile is greater than 27 m, the settlement deceleration rate of the box foundation will slow down, and the deceleration rate of the horizontal displacement of the independent foundation and box foundation will slow down.

2021 ◽  
Vol 283 ◽  
pp. 01019
Author(s):  
Liu Tianyun ◽  
Yu Changyi ◽  
Zhu Nan

The three-dimensional numerical model of the foundation pit engineering is established, and the fluid-structure coupling method is used to calculate the settlement of the pile foundation of the adjacent railway bridge caused by the excavation and dewatering of the foundation pit. The results show that the settlement range of the soil around the foundation pit reaches 140m, and the pile foundation of the railway bridge is within the influence range, but the maximum settlement value does not exceed the limit value specified in the design. The method used in this paper provides effective guidance for the construction optimization of the same type of projects and reduces the project cost.


2011 ◽  
Vol 243-249 ◽  
pp. 2338-2344
Author(s):  
Qing Yuan Li ◽  
Yang Wang

Taking deep excavation engineering in North Region of Senlin Park Station of Beijing Olympic Subway branch as engineering background, deformation law of enclosure structure of deep excavation are studied by the in-situ monitoring means .It shows that the maximum horizontal displacement of retaining pile is closely related with excavation depth and time. When the deep foundation pit is excavated to a certain depth, and steel brace hasn’t been erected, horizontal displacement of the pile tops is maximum. The location of the maximum horizontal displacement shifts down with foundation pit excavation and steel brace erection. With steel brace application, steel axis force decrease, so steel brace can effectively control horizontal displacements of retaining pile and internal force of steel in the pile. In addition, temperature has a certain effect to axis force of steel brace.


2012 ◽  
Vol 174-177 ◽  
pp. 2020-2023 ◽  
Author(s):  
Bing Wang

Based on a typical projects, the horizontal displacement in depth, horizontal displacement and vertical subsidence of pile top, and settlements of surrounding buildings are monitored with the process on digging of deep foundation pit. The study on digging process of foundation pit is analyzed by using finite element software. Using mapped meshing method, from mixing the pile near the semi-circular area (radius = 50m), the meshing appropriate encryption in order to improve the accuracy of the external semi-circular area (radius = 65m) mesh is less appropriate sparse.Layer by layer to kill the layers of the soil unit and activate the soil nails (spring element), the simulated excavation and synchronization of soil nails construction.Verify the arc form of failure surface in side of deep foundation pit in soft soil area. Which is valuable for reference to similar structure engineering of foundation pit.


2014 ◽  
Vol 484-485 ◽  
pp. 404-407 ◽  
Author(s):  
Qing Guo Ren ◽  
Guang Zhang ◽  
Xiao Guang Yue ◽  
Wen Cheng Liao

Deep soil horizontal displacement monitoring can measure the retaining wall board, row piles deformed shape, reflect the foundation on the vertical profile of horizontal displacement with depth changes in the law, predict foundation stability and security risks. Combined with Wuhan WANGJiaDun Pit Engineering, this article introduce CX-3C inclinometer work principle, put forward the calculated optimization measures of inclinometer, and analysis the main factors which should be considered to arrange the measuring points.


2014 ◽  
Vol 919-921 ◽  
pp. 1411-1415
Author(s):  
Bo Liu ◽  
Pei Sheng Xi

One deep foundation pit in Hefei urban rail transit project is adjacent to the existed expressway subgrade, it's in the unsymmetrical loaded state. The control of foundation pit deformation and the safety of subgrade must be strictly ensured. Based on it, the design scheme of supporting system, the construction processes of earth excavation, top beam, concrete support and steel support was introduced. The horizontal displacement of fender piles and the settlement of subgrade was monitored. The field monitoring results indicate, there exists a great difference between the retaining structure deformation under the action of unsymmetrical load and the deformation under the action of symmetrical load, the horizontal displacement of fender piles on the side of subgrade is bigger than the other side, the upper pile appears to be a "drift" towards the lower-load side; although the absolute value of horizontal displacement of fender piles and settlement of subgrade seems to be a big number, the relative value is small compared to the whole length of fender pile and expressway, meeting relevant standard requirements. The deep foundation pit and expressway kept safe and stable in the all periods of construction, no one accident was occurred during that time. Thus, it can be seen that this construction technology is effective in controlling the deformation during excavation, which can provide a reference for similar projects in design and construction in the future.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yuan Mei ◽  
Dongbo Zhou ◽  
Xueyan Wang ◽  
Liangjie Zhao ◽  
Jinxin Shen ◽  
...  

So far, there have been a large number of diaphragm walls in the Yangtze River Delta as engineering examples of deep foundation pit maintenance structures in subway stations, but there is a lack of systematic research and summary on the deformation characteristics of ground connecting walls. This study aimed to clarify the deformation law of the diaphragm wall during the excavation of a deep foundation pit in a soft soil region. Based on the monitoring data of the diaphragm wall of the deep foundation pit of the Hangzhou metro station, the monitoring data of the deep foundation pits of 15 subway stations in Shanghai and Ningbo cities around Hangzhou were considered. Grouping and classification methods were used to analyze the similarities and differences in the deformation characteristics of the diaphragm wall in the three regions. The results indicate the following: the maximum lateral deformation of the diaphragm wall in Hangzhou increases linearly with the relative depth of the maximum lateral deformation. The maximum lateral deformation of the foundation pit in Hangzhou is 0.072% H∼0.459% H, with a mean of 0.173% H. The wall deformation in Hangzhou varies significantly with the depth of the foundation pit, but the influence of the depth of the foundation pit on the wall deformation is considerably less than that in Shanghai and Ningbo. The corresponding position of the maximum lateral deformation in the excavation depth increases linearly with the excavation depth of the foundation pit, and the corresponding position of the lateral deformation of the diaphragm wall in Shanghai is more affected by the excavation depth of the foundation pit. The lateral deformation of the diaphragm wall increases rapidly in the range of 0 H–0.5 H, and the maximum lateral deformation occurs at 0.5 H–1.1 H.


2015 ◽  
Vol 9 (1) ◽  
pp. 463-470
Author(s):  
Donglin Wang ◽  
Lei Wang

The air shaft deep foundation pit 6 is influenced by subgrade unbalance loading of highway 312, specifically its deep horizontal displacement of supporting piles and subgrade settlement of expressway 312 under unsymmetrical load effect. This paper carries out construction monitoring and numerical simulation analysis and gives a detailed study on the influenced factors of support structure deformation. Calculation results show that subgrade unsymmetrical load has a great influence on deep horizontal deformation of supporting piles. The maximum horizontal displacement at the bias side is about three times more than non-bias side’s; when the distance of subgrade to foundation pit is the same as the depth of excavation, the influence of subgrade on pit can be ignored; as the cohesion and internal friction angle increases, the horizontal displacement of fender piles decreases. However, enlarging the embedded depth of supporting piles has no significant influence on the stability of foundation pit.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Zhouqiang Li

Taking a super large deep foundation pit project as an example, the horizontal displacement of crown beam and driveway, surface settlement, axial force of anchor cable, and underground water level in the construction process of the foundation pit are dynamically monitored and analyzed. The excavation deformation rule of the deep foundation pit and the influence of excavation on surrounding buildings are analyzed. The results show that, with the excavation of the foundation pit, the crown beam and driveway of the foundation pit incline towards the direction of the pit and eventually tend to be stable. The variation of axial force of the prestressed anchor cable in the first layer of the foundation pit is basically consistent with the variation of horizontal displacement time history. The variation trend of the groundwater level at each side of the foundation pit is different but tends to be stable in a short time. In the whole monitoring period, the cumulative settlement value of each area of the foundation pit is within the controllable range, but the surface settlement of the north side of the foundation pit and a surrounding building has not reached stability, so it is suggested to extend the monitoring time of settlement in the relevant area.


Sign in / Sign up

Export Citation Format

Share Document