scholarly journals Intestinal Metabolomics of Juvenile Lenok (Brachymystax Lenok) in Response to Heat Stress

Author(s):  
Yan Chen ◽  
Yang Liu ◽  
Yucen Bai ◽  
Shaogang Xu ◽  
Xiaofei Yang ◽  
...  

Abstract Changes in the metabolic profile within the intestine of lenok (Brachymystax lenok) when challenged to acute and lethal heat stress (HS) are studied using no-target HPLC-MS/MS metabonomic analysis. Of 51 differentially expressed metabolites identified in response to HS, 34 occurred in the positive ion mode and 17 in negative ion mode (VIP > 1, P < 0.05). Changes in metabolites (i.e. alpha-D-glucose, stachyose and L-lactate) related to carbohydrate and glycolysis are identified in HS-treated lenok. Fatty acid β-oxidation in HS-treated lenok was inhibited by accumulation of acetyl carnitine, palmitoylcarnitine, carnitine, and erucic acid. Many amino acids (L-tryptophan, D-proline, L-leucine, L-phenylalanine, L-aspartate, L-tyrosine, L-methionine, L-histidine and L-glutamine) decreased to support energy demands in HS-treated lenok. Oxidative damage in HS-treated lenok was indicated by decreased glycerophospholipid metabolites (i.e. glycerophosphocholine, 1-palmitoyl-2-hydroxy-sn-glycero-3-phosphoethanolamine, 1-palmitoyl-sn-glycero-3-phosphocholine, 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine, and 1, 2-dioleoyl-sn-glycero-3-phosphatidylcholine), and increased oxylipin production (12-HETE and 9R, 10S-EpOME). Oxidative stress increased formation of eicosanoids and dicarboxylic acids, overwhelming the mitochondrial β-oxidation pathway, while minor oxidative pathways (omega-oxidation and peroxisomal beta-oxidation) were likely to be activated in HS-treated lenok.

2020 ◽  
Author(s):  
Lin Yang ◽  
Liang Wang ◽  
Yangyang Deng ◽  
Lizhe Sun ◽  
Bowen Low ◽  
...  

Abstract Background: Ischemic heart disease (IHD) is a common cardiovascular disorder associated with inadequate blood supply to the myocardium. Chronic coronary ischemia leads to ischemic cardiomyopathy (ICM). Despite their rising prevalence and morbidity, few studies have discussed the lipids alterations in these patients. Methods: In this cross-sectional study, we analyzed serum lipids profile in IHD and ICM patients using a lipidomics approach. Consecutive consenting patients admitted to the hospital for IHD and ICM were enrolled. Serum samples were obtained after overnight fasting. Non-targeted metabolomics was applied to demonstrate lipids metabolic profile in control, IHD and ICM patients. Results: A total of 63 and 62 lipids were detected in negative and positive ion mode respectively. Among them, 16:0 Lyso PI, 18:1 Lyso PI in negative ion mode, and 19:0 Lyso PC, 12:0 SM d18:1/12:0, 15:0 Lyso PC, 17:0 PC, 18:1-18:0 PC in positive ion mode were significantly altered both in IHD and ICM as compared to control. 13:0 Lyso PI, 18:0 Lyso PI, 16:0 PE, 14:0 PC DMPC, 16:0 ceramide, 18:0 ceramide in negative ion mode, and 17:0 PE, 19:0 PC, 14:0 Lyso PC, 20:0 Lyso PC, 18:0 PC DSPC, 18:0-22:6 PC in positive ion mode were significantly altered only in ICM as compared to IHD and control. Conclusion: Using non-targeted lipidomics profiling, we have successfully identified a group of circulating lipids that were significantly altered in IHD and ICM. The lipids metabolic signatures shed light on potential new biomarkers and therapeutics for preventing and treating ICM.


2019 ◽  
Vol 26 (2) ◽  
pp. 131-143 ◽  
Author(s):  
Monika Stróżyńska ◽  
Jürgen H. Gross ◽  
Katrin Schuhen

A structural investigation of perfluorocarboxylic acid derivatives formed in the reaction with N,N-dimethylformamide dialkylacetals employing several techniques of mass spectrometry (MS) is described. Two derivatizing reagents, dimethylformamide dimethyl acetal (DMF-DMA) and dimethylformamide diethylacetal (DMF-DEA) were used. In contrast to carboxylic acids, perfluorocarboxylic acids are not able to form alkyl esters as the main product in this reaction. We found that perfluorooctanoic acid (PFOA) forms a salt with N,N-dimethylformamide dialkylacetals. This salt undergoes a further reaction inside the injection block of a gas chromatograph (GC) by loss of CO2 and then forms 1,1-perfluorooctane-(N,N,N,N-tetramethyl)-diamine. The GC-MS experiments using both electron ionization (EI) and positive-ion chemical ionization (PCI) revealed that the same reaction products are formed with either derivatizing reagent. Subjecting the perfluorocarboxylic acid derivative to electrospray ionization (ESI) and direct analysis in real time (DART), both positive- and negative-ion modes indicated that cluster ions are formed. In the positive-ion mode, this cluster ion consists of two iminium cations and one PFOA anion, while in the negative-ion mode, it comprises two PFOA anions and one cation. The salt structure was further confirmed by liquid injection field desorption/ionization (LIFDI) as well as infrared (IR) spectroscopy. We propose a simple mechanism of N,N,N′,N′-tetramethylformamidinium cation formation. The structure elucidation is supported by specific fragment ions as obtained by GC-EI-MS and GC-PCI-MS analyses.


1984 ◽  
Vol 67 (4) ◽  
pp. 734-738 ◽  
Author(s):  
Ronald D Plattner ◽  
Glenn A Bennett ◽  
Robert D Stubblefield

Abstract MS/MS daughter experiments were recorded for aflatoxins B1, B2, G1, G2, M1, M2, and aflatoxicol, using 3 ionization modes. Daughters were recorded from the molecular ion (M+) using electron impact ionization (EI). Daughters from the protonated molecules (MH+) were recorded in the positive ion mode and the daughters from the molecular anion (M+) were recorded in the negative ion mode using chemical ionization (CI). These daughter spectra are all relatively simple. The EI daughters are quite similar to conventional EI spectra. The yield of (M-) is about 100 times greater than the yield of M+ in EI or MH+ in isobutane CI spectrum. Negative ion daughter spectra were used to demonstrate the feasibility of determining the presence of aflatoxin B1 in crude extracts of contaminated corn. Aflatoxin B1 could be detected at 10 ppb.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Li Su ◽  
Changli Yang ◽  
Jianyu Meng ◽  
Lv Zhou ◽  
Changyu Zhang

AbstractUltraviolet A (UV-A) radiation is a significant environmental factor that causes photoreceptor damage, apoptosis, and oxidative stress in insects. Ostrinia furnacalis is an important pest of corn. To understand the adaptation mechanisms of insect response to UV-A exposure, this study revealed differentially expressed genes (DEGs) and differently expressed metabolites (DEMs) in O. furnacalis under UV-A exposure. Three complementary DNA libraries were constructed from O. furnacalis adult females (CK, UV1h, and UV2h), and 50,106 expressed genes were obtained through Illumina sequencing. Of these, 157 and 637 DEGs were detected in UV1h and UV2h after UV-A exposure for 1 and 2 h, respectively, compared to CK, with 103 and 444 upregulated and 54 and 193 downregulated genes, respectively. Forty four DEGs were detected in UV2h compared to UV1h. Comparative transcriptome analysis between UV-treated and control groups revealed signal transduction, detoxification and stress response, immune defense, and antioxidative system involvement. Metabolomics analysis showed that 181 (UV1h vs. CK), 111 (UV2h vs. CK), and 34 (UV2h vs. UV1h) DEMs were obtained in positive ion mode, while 135 (UV1h vs. CK), 93 (UV2h vs. CK), and 36 (UV2h vs. UV1h) DEMs were obtained in negative ion mode. Moreover, UV-A exposure disturbed amino acid, sugar, and lipid metabolism. These findings provide insight for further studies on how insects protect themselves under UV-A stress.


2021 ◽  
Author(s):  
Tina B. Angerer ◽  
Jerome Bour ◽  
Jean-Luc Biagi ◽  
Eugene Moskovets ◽  
Gilles Frache

Mass spectrometry imaging (MSI) is a technique uniquely suited to localize and identify lipids in a tissue sample. Using an AP-MALDI UHR source coupled to an Orbitrap Elite, numerous lipid locations and structures can be determined in high mass resolution spectra and at cellular spatial resolution, but careful sample preparation is necessary. We tested 11 protocols on serial brain sections for the commonly used MALDI matrices, CHCA, Norharmane, DHB, DHAP, THAP, and DAN, in combination with tissue washing and matrix additives, to determine the lipid coverage, signal intensity, and spatial resolution achievable with AP-MALDI. In positive ion mode, the most lipids could be detected with CHCA and THAP, while THAP and DAN without additional treatment offered the best signal intensities. In negative ion mode, DAN showed the best lipid coverage and DHAP performed superior for Gangliosides. DHB produced intense cholesterol signals in the white matter. 155 lipids were assigned in positive (THAP), 137 in negative ion mode (DAN) and 76 lipids were identified using on tissue tandem-MS. The spatial resolution achievable with DAN was 10 μm, confirmed with on tissue line-scans. This enabled the association of lipid species to single neurons in AP-MALDI images. The results show that the performance of AP-MALDI is comparable to vacuum MALDI techniques for lipid imaging.


2013 ◽  
Vol 25 (1) ◽  
pp. 262 ◽  
Author(s):  
A. F. González-Serrano ◽  
C. R. Ferreira ◽  
V. Pirro ◽  
L. S. Eberlin ◽  
J. Heinzmann ◽  
...  

Lipid structural analysis in individual pre-implantation mammalian embryos is hampered by the small amount of biological material, such that most studies use staining methods or gas chromatography analysis generate information only on the fatty acyl residues. Recent developments in high-resolution desorption electrospray ionization mass spectrometry (DESI-MS) allow the analysis of free fatty acids (FA) and glycerophospholipids (PL) in individual bovine embryos. Here, we report on the use of DESI-MS for the sensitive analysis of triacylglycerol (TAG) species, profiles of FA and PL in individual bovine oocytes and embryos. Bovine oocytes (n = 40) and blastocysts (n = 42) were frozen in a minimal volume of PBS (2 to 5 µL). Samples were directly deposited on glass slides after thawing. After drying, a volume of 500 µL of methanol : water (1 : 1, vol/vol) was carefully deposited on the surface of the glass slide and removed by orienting the glass slide vertically to eliminate PBS salts. An Orbitrap mass spectrometer was used for the experiments. Parameters for the positive ion mode were as follows: acetonitrile (ACN) supplemented with 3 µL mL–1 of AgNO3 at a 5 µL min–1 flow rate, injection time of 1000 ms, and a mass-to-charge range of m/z 400 to 1500. For the negative ion mode, the solvent combination used was acetonitrile + dimethylformamide (1 : 1, vol/vol) at a 1.0 µL min–1 flow rate, a maximum injection time of 1000 ms, and a mass-to-charge range of m/z 150 to 1000. Positive ion mode data for the detection of TAG species were acquired first, followed by acquisition of FA and PL in the negative ion mode. Detection of TAG by DESI, which is extremely useful for bovine embryo cryopreservation and metabolism research, has been performed by adding AgNO3 in the DESI spray to obtain silver adducts, which are easily recognised by the characteristic 1 : 1 abundance ratio of the 107 : 109 Ag isotopes. The most abundant fatty acyl residues present in TAG species were palmitic (P), linoleic (L), oleic (O), and stearic (S) acids, such as TAG of m/z 937, PPL (50 : 2); m/z 965, POO (52 : 1); m/z 967, POS (52 : 2); m/z 989, OOL/LLS (54 : 4); and m/z 991, OOO, SOL (54 : 3). Free FA and PL profiles collected from the same samples in the negative ion mode were similar to those in our recent report (2012 J. Mass Spectrom. 47, 29–33). Lipid attribution has been performed based on high-resolution mass analysis. Multivariate statistics from this data set will allow visualisation of differences observed in the lipid profiles among samples. In conclusion, we report the use of DESI-MS for the sensitive analysis of TAG in individual bovine oocytes and embryos and the creation of profiles of FA, PL, and TAG species in the same sample by DESI-MS.


Foods ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 93
Author(s):  
Chenling Qu ◽  
Zhuozhen Li ◽  
Xiupin Wang

Aspergillus flavus is a common contaminant in grain, oil and their products. Its metabolite aflatoxin B1 (AFB1) has been proved to be highly carcinogenic. Therefore, it is of great importance to find possible antifungal substances to inhibit the growth and toxin production of Aspergillus flavus. Carvacrol (CV) was reported as a potent antifungal monoterpene derived from plants. In this paper, the antifungal effects and mechanism of CV on Aspergillus flavus were investigated. CV was shown good inhibition on the growth of Aspergillus flavus and the production of AFB1. CV used in concentrations ranging from 0, 50, 100 and 200 μg/mL inhibited the germination of spores, mycelia growth and AFB1 production dose-dependently. To explore the antifungal mechanism of CV on Aspergillus flavus, we also detected the ergosterol content of Aspergillus flavus mycelia, employed Scanning Electron Microscopy (SEM) to observe mycelia morphology and utilized Ultra-High-Performance Liquid Chromatography-High-Resolution Mass Spectrometry (UHPLC-HRMS) to explore the lipidome profiles of Aspergillus flavus. The results showed that the production of ergosterol of mycelia was reduced as the CV treatment concentration increased. SEM photographs demonstrated a rough surface and a reduction in the thickness of hyphae in Aspergillus flavus treated with CV (200 µg/mL). In positive ion mode, 21 lipids of Aspergillus flavus mycelium were downregulated, and 11 lipids were upregulated after treatment with 200-µg/mL CV. In negative ion mode, nine lipids of Aspergillus flavus mycelium were downregulated, and seven lipids upregulated after treatment with 200-µg/mL CV. In addition, the analysis of different lipid metabolic pathways between the control and 200-µg/mL CV-treated groups demonstrated that glycerophospholipid metabolism was the most enriched pathway related to CV treatment.


2017 ◽  
Vol 23 (5) ◽  
pp. 245-253 ◽  
Author(s):  
Maarja-Liisa Oldekop ◽  
Riin Rebane ◽  
Koit Herodes

Matrix effect, the influence of co-eluting components on the ionization efficiency of the analyte, affects the trueness and precision of the LC–ESI–MS analysis. Derivatization can reduce or eliminate matrix effect, for example, diethyl ethoxymethylenemalonate (DEEMM) derivatives have shown less matrix effect compared to other derivatives. Moreover, the use of negative ion mode can further reduce matrix effect. In order to investigate the combination of derivatization and different ionization modes, an LC–ESI–MS/MS method using alternating positive/negative ion mode was developed and validated. The analyses in positive and negative ion modes had comparable limit of quantitation values. The influence of ESI polarity on matrix effect was investigated during the analysis of 22 DEEMM-derivatized amino acids in herbal extracts and honeys. Sample dilution approach was used for the evaluation of the presence of matrix effect. Altogether, 4 honeys and 11 herbal extracts were analyzed, and the concentrations of 22 amino acids in the samples are presented. In the positive ion mode, matrix effect was observed for several amino acid derivatives and the matrix effect was stronger in honey samples compared to the herbal extracts. The negative ion mode was free from matrix effect, with only few exceptions in honeys (average relative standard deviation over all analytes and matrices was 8%; SD = 7%). The matrix effect was eliminated in the positive ion mode by sample dilution and agreement between concentrations from the two ion modes was achieved for most amino acids. In conclusion, it was shown that the combination of derivatization and negative ion mode can be a powerful tool for minimizing matrix effect in more complicated applications.


Author(s):  
Manish Kumar Dwivedi ◽  
Shringika Mishra ◽  
Shruti Sonter ◽  
Prashant Kumar Singh

Abstract Background The objectives of the current study are to evaluate the traditionally used medicinal plants Andrographis paniculata for in vitro anti-malarial activity against human malarial parasite Plasmodium falciparum and to further characterize the anti-malarial active extract of A. paniculata using spectroscopic and chromatographic methods. Results The chloroform extract of A. paniculata displayed anti-malarial activity with IC50 values 6.36 μg/ml against 3D7 strain and 5.24 μg/ml against K1 strains respectively with no evidence of significant cytotoxicity against mammalian cell line (CC50 > 100 μg/ml). LC-MS analysis of the extract led to the identification of 59 compounds based on their chromatographic and mass spectrometric features (a total of 35 compounds are present in positive ion and 24 compounds in negative ion mode). We have identified 5 flavonoids and 30 compounds as diterpenoids in positive ion mode, while in the negative mode all identified compounds were diterpenoids. Characterization of the most promising class of compound diterpenoids using HPLC-LC-ESI-MS/MS was also undertaken. Conclusions The in vitro results undoubtedly validate the traditional use of A. paniculata for the treatment of malaria. The results have led to the identification of diterpenoids from IGNTU_06 extract as potential anti-malarial compounds that need to be further purified and analyzed in anti-malarial drug development programs. Graphical abstract


Sign in / Sign up

Export Citation Format

Share Document