scholarly journals Pretreated Sugarcane Bagasse Result in More Efficient Degradation by Streptomyces sp S2

Author(s):  
Stanislaus Aditya Agung ◽  
Dede Heri Yuli Yanto ◽  
Anja Meryandini ◽  
Titi Candra Sunarti

Abstract Streptomyces genera plays important role in lignocellulose degradation. Many research founds Streptomyces has cellulolytic and ligninolytic enzymes that sufficient to degrade lignocellulosic materials. However, minimum lignocellulosic material condition that can efficiently degraded by Streptomyces sp. has not been fully understood. In this research, three pretreament conditions (physical, alkaline-hydrotermal, and hydrogen-peroxide chemical treatments) of sugarcane bagasse used as lignocellulosic material, to further degraded by Streptomyces sp. S2. Lignocellulose component measurement conclude that raw (physical treated only) bagasse wasn’t efficiently degraded by Streptomyces sp S2. Hydrogen-peroxide was effective on reducing both syringil and guaiacyl lignin, meanwhile alkaline-hydrotermal pretreatment was very effective on reducing syringil lignin. This study suggest that hydrogen-peroxide pretreatment can be used in many type of lignocellulosic material, which can be further degraded by Streptomyces sp. S2. Alkaline-hydrotermal preteatment on the other hand is best suited to degrade lignocellulosic material that have high percentage of syringil lignin.

2018 ◽  
Vol 33 (2) ◽  
pp. 165-174 ◽  
Author(s):  
Dan Huo ◽  
Qiulin Yang ◽  
Guigan Fang ◽  
Qiujuan Liu ◽  
Chuanling Si ◽  
...  

Abstract Eucalyptus residues from pulp mill were pretreated with aqueous ammonia soaking (AAS) method to improve the efficiency of enzymatic hydrolysis. The optimized condition of AAS was obtained by response surface methodology. Meanwhile, hydrogen peroxide was introduced into the AAS system to modify the AAS pretreatment (AASP). The results showed that a fermentable sugar yield of 64.96 % was obtained when the eucalypt fibers were pretreated at the optimal conditions, with 80 % of ammonia (w/w) for 11 h and keeping the temperature at 90 °C. In further research it was found that the addition of H2O2 to the AAS could improve the pretreatment efficiency. The delignification rate and enzymatic digestibility were increased to 64.49 % and 73.85 %, respectively, with 5 % of hydrogen peroxide being used. FTIR analysis indicated that most syringyl and guaiacyl lignin and a trace amount of xylan were degraded and dissolved during the AAS and AASP pretreatments. The CrI of the raw material was increased after AAS and AASP pretreatments, which was attributed to the removal of amorphous portion. SEM images showed that microfibers were separated and explored from the initial fiber structure after AAS pretreatment, and the AASP method could improve the destructiveness of the fiber surface.


2019 ◽  
Vol 17 ◽  
pp. 1-6 ◽  
Author(s):  
Gabriella Soares Borges Salomão ◽  
Jacyele Clarindo Agnezi ◽  
Larissa Bastos Paulino ◽  
Luana Borchardt Hencker ◽  
Taísa Shimosakai de Lira ◽  
...  

2018 ◽  
Author(s):  
Marcella Fernandes de Souza ◽  
Elba Pinto da Silva Bon ◽  
Ayla Sant’ Ana da Silvab

AbstractThe high cost of commercial cellulases still hampers the economic competitiveness of the production of fuels and chemicals from lignocellulosic biomasses. This cost may be decreased by the on-site production of cellulases with the integrated use of the lignocellulosic biomass as carbon source. This integrated approach was evaluated in the present study whereby steam-pretreated sugarcane bagasse (SPSB) was used as carbon source for the production of cellulases by Trichoderma reesei Rut C30 and the produced enzymes were subsequently used for SPSB hydrolysis. An enzyme preparation with a high cellulase activity, of 1.93 FPU/mL, was obtained, and a significant β-glucosidase activity was achieved in buffered media, indicating the importance of pH control during enzyme production. The hydrolysis of SPSB with the laboratory-made mixture resulted in a glucose yield of 80%, which was equivalent to those observed for control experiments using commercial enzymes. Even though the supplementation of this mixture with external β-glucosidase from Aspergillus awamori was found to increase the initial hydrolysis rates, it had no impact on the final hydrolysis yield. It was shown that SPSB is a promising carbon source for the production of cellulases and β-glucosidases by T. reesei Rut C30 and that the enzyme preparation obtained is effective for the hydrolysis of SPSB, supporting the on-site integrated approach to decrease the cost of the enzymatic hydrolysis of lignocellulosic biomass.


2015 ◽  
Vol 7 (6) ◽  
pp. 2347-2353 ◽  
Author(s):  
Maísa Azevedo Beluomini ◽  
José Luiz da Silva ◽  
Nelson Ramos Stradiotto

Uronic, d-glucuronic and d-galacturonic acids are found in lignocellulosic materials and are known to be used in the food industry and chemical industries.


Fuel ◽  
2014 ◽  
Vol 136 ◽  
pp. 349-357 ◽  
Author(s):  
Sarita C. Rabelo ◽  
Rafael R. Andrade ◽  
Rubens Maciel Filho ◽  
Aline C. Costa

2018 ◽  
Vol 267 ◽  
pp. 634-641 ◽  
Author(s):  
Artur S.C. Rego ◽  
Isabelle C. Valim ◽  
Anna A.S. Vieira ◽  
Cecília Vilani ◽  
Brunno F. Santos

Sign in / Sign up

Export Citation Format

Share Document