scholarly journals Identification of Autism Risk Genes in a Chinese Cohort via Whole-Exome Sequencing with the Joint Calling Analysis

Author(s):  
Bo Yuan ◽  
Peipei Cheng ◽  
Ran Zhang ◽  
Yasong Du ◽  
Zilong Qiu

Abstract Autism spectrum disorder (ASD) is a highly heritable neurodevelopmental disorder characterized by deficits in social interactions and repetitive behaviors. Although hundreds of ASD risk genes, implicated in synaptic formation, transcriptional regulation, and chromatin remodeling, have been identified, the genetic analysis on east Asian ASD cohorts in the whole-geome or whole-exome level is still limited(1-5). Here we performed whole-exome sequencing on 168 ASD probands with their unaffected parents of Chinese origin. We applied a joint calling analytical pipeline based on GATK best practices and identified numerous de novo variants including single nucleotide variants (SNVs) and insertion or deletions (INDELs). By querying the Simons foundation autism research initiative (SFARI) gene database, we found that there were potential novel ASD risk genes in East Asian cohorts, which did not exist in European American populations. Furthermore, our analysis pipeline identified de novo copy number variations (CNVs) of known ASD-related gene based on a sufficiently large sample size, validated by quantitative PCR. Our work indicated that there may be differences in potential ASD genetic components existing across different geographical populations, suggesting that genomic analysis over large cohorts are required for each population in order to precisely identify ASD risk genes.

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Yunfei Tang ◽  
Yamei Liu ◽  
Lei Tong ◽  
Shini Feng ◽  
Dongshu Du ◽  
...  

Autism spectrum disorder (ASD) is a complex neurological disease characterized by impaired social communication and interaction skills, rigid behavior, decreased interest, and repetitive activities. The disease has a high degree of genetic heterogeneity, and the genetic cause of ASD in many autistic individuals is currently unclear. In this study, we report a patient with ASD whose clinical features included social interaction disorder, communication disorder, and repetitive behavior. We examined the patient’s genetic variation using whole-exome sequencing technology and found new de novo mutations. After analysis and evaluation, ARRB2 was identified as a candidate gene. To study the potential contribution of the ARRB2 gene to the human brain development and function, we first evaluated the expression profile of this gene in different brain regions and developmental stages. Then, we used weighted gene coexpression network analysis to analyze the associations between ARRB2 and ASD risk genes. Additionally, the spatial conformation and stability of the ARRB2 wild type and mutant proteins were examined by simulations. Then, we further established a mouse model of ASD. The results showed abnormal ARRB2 expression in the mouse ASD model. Our study showed that ARRB2 may be a risk gene for ASD, but the contribution of de novo ARRB2 mutations to ASD is unclear. This information will provide references for the etiology of ASD and aid in the mechanism-based drug development and treatment.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Bashayer Al-Mubarak ◽  
Mohamed Abouelhoda ◽  
Aisha Omar ◽  
Hesham AlDhalaan ◽  
Mohammed Aldosari ◽  
...  

Genes ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 1
Author(s):  
Namshin Kim ◽  
Kyoung Hyoun Kim ◽  
Won-Jun Lim ◽  
Jiwoong Kim ◽  
Soon Ae Kim ◽  
...  

Autism spectrum disorder (ASD) is a highly heritable condition caused by a combination of environmental and genetic factors such as de novo and inherited variants, as well as rare or common variants among hundreds of related genes. Previous genome-wide association studies have identified susceptibility genes; however, most ASD-associated genes remain undiscovered. This study aimed to examine rare de novo variants to identify genetic risk factors of ASD using whole exome sequencing (WES), functional characterization, and genetic network analyses of identified variants using Korean familial dataset. We recruited children with ASD and their biological parents. The clinical best estimate diagnosis of ASD was made according to the Diagnostic and Statistical Manual of Mental Disorders (DSM-5TM), using comprehensive diagnostic instruments. The final analyses included a total of 151 individuals from 51 families. Variants were identified and filtered using the GATK Best Practices for bioinformatics analysis, followed by genome alignments and annotation to the reference genome assembly GRCh37 (liftover to GRCh38), and further annotated using dbSNP 154 build databases. To evaluate allele frequencies of de novo variants, we used the dbSNP, gnomAD exome v2.1.1, and genome v3.0. We used Ingenuity Pathway Analysis (IPA, Qiagen) software to construct networks using all identified de novo variants with known autism-related genes to find probable relationships. We identified 36 de novo variants with potential relations to ASD; 27 missense, two silent, one nonsense, one splice region, one splice site, one 5′ UTR, and one intronic SNV and two frameshift deletions. We identified six networks with functional relationships. Among the interactions between de novo variants, the IPA assay found that the NF-κB signaling pathway and its interacting genes were commonly observed at two networks. The relatively small cohort size may affect the results of novel ASD genes with de novo variants described in our findings. We did not conduct functional experiments in this study. Because of the diversity and heterogeneity of ASD, the primary purpose of this study was to investigate probable causative relationships between novel de novo variants and known autism genes. Additionally, we based functional relationships with known genes on network analysis rather than on statistical analysis. We identified new variants that may underlie genetic factors contributing to ASD in Korean families using WES and genetic network analyses. We observed novel de novo variants that might be functionally linked to ASD, of which the variants interact with six genetic networks.


2017 ◽  
Author(s):  
Carolina Cappi ◽  
Melody E. Oliphant ◽  
Zsanett Péter ◽  
Gwyneth Zai ◽  
Catherine A. W. Sullivan ◽  
...  

ABSTRACTObsessive-compulsive disorder (OCD) is a debilitating developmental neuropsychiatric disorder with a genetic risk component, yet identification of high-confidence risk genes has been challenging. We performed whole-exome sequencing in 222 OCD parent-child trios (184 trios after quality control), finding strong evidence that de novo likely gene disrupting and predicted damaging missense variants contribute to OCD risk. Together, these de novo damaging variants are enriched in OCD probands (RR 1.52, p=0.0005). We identified two high-confidence risk genes, each containing two de novo damaging variants in unrelated probands: CHD8 (Chromodomain Helicase DNA Binding Protein 8) and SCUBE1 (Signal Peptide, CUB Domain And EGF Like Domain Containing 1). Based on our data, we estimate that 34% of de novo damaging variants seen in OCD contribute to risk, and that de novo damaging variants in approximately 335 genes contribute to risk in 22% of OCD cases. Furthermore, genes harboring de novo damaging variants in OCD are enriched for those reported in neurodevelopmental disorders, particularly autism spectrum disorders. An exploratory network analysis reveals significant functional connectivity and enrichment in canonical pathways related to immune response.SIGNIFICANCE STATEMENTDecades of genetic studies in obsessive-compulsive disorder (OCD) have yet to provide reproducible, statistically significant findings. Following an approach that has led to tremendous success in gene discovery for several neuropsychiatric disorders, here we report findings from DNA whole-exome sequencing of patients with OCD and their parents. We find strong evidence for the contribution of spontaneous, or de novo, predicted-damaging genetic variants to OCD risk, identify two high-confidence risk genes, and detect significant overlap with genes previously identified in autism. These results change the status quo of OCD genetics by identifying novel OCD risk genes, clarifying the genetic landscape of OCD with respect to de novo variation, and suggesting underlying biological pathways that will improve our understanding of OCD biology.


2017 ◽  
Vol 41 (S1) ◽  
pp. S309-S309 ◽  
Author(s):  
H. Yoo ◽  
S.A. Kim ◽  
M. Park ◽  
J. Kim ◽  
W.J. Lim ◽  
...  

ObjectivesThe objective of this family-based whole exome sequencing (WES) is to examine genetic variants of autism spectrum disorder (ASD) in Korean population.MethodsThe probands with ASD and their biological parents were recruited in this study. We ascertained diagnosis based on DSM-5™ criteria, using Autism Diagnostic Observation Schedule and Autism Diagnostic Interview–Revised. We selected probands with typical phenotypes of ASD both in social interaction/communication and repetitive behaviour/limited interest domains, with intellectual disability (IQ < 70), for attaining homogeneity of the phenotypes. First, we performed WES minimum 50× for 13 probands and high-coverage pooled sequencing for their parents. We performed additional WES for 38 trio families, at least 100× depth. De novo mutations were confirmed by Sanger sequencing. All the sequence reads were mapped onto the human reference genome (hg19 without Y chromosome). Bioinformatics analyses were performed by BWA-MEM, Picard, GATK, and snpEff for variant annotation. We selected de novo mutation candidates from probands, which are neither detected in two pooled samples nor both parents.ResultsFifty-one subjects with ASD (5 females, 40∼175 months, mean IQ 42) and their families were included in this study. We discovered 109 de novo variants from 46 families. Twenty-nine variants are expected to be amino acid changing, potentially causing deleterious effects. We assume CELSR3, MYH1, ATXN1, IDUA, NFKB1, and C4A/C4B may have adverse effect on central nerve system.ConclusionsWe observed novel de novo variants which are assumed to contribute to development of ASD with typical phenotypes and low intelligence in WES study.Disclosure of interestThis work has been supported by Healthcare Technology R&D project (No: A120029) by Ministry of Health and Welfare, Republic of Korea.


Genes ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 560
Author(s):  
Ana Arteche-López ◽  
Maria José Gómez Rodríguez ◽  
Maria Teresa Sánchez Calvin ◽  
Juan Francisco Quesada-Espinosa ◽  
Jose Miguel Lezana Rosales ◽  
...  

Autism spectrum disorder (ASD) is a prevalent and extremely heterogeneous neurodevelopmental disorder (NDD) with a strong genetic component. In recent years, the clinical relevance of de novo mutations to the aetiology of ASD has been demonstrated. Current guidelines recommend chromosomal microarray (CMA) and a FMR1 testing as first-tier tests, but there is increasing evidence that support the use of NGS for the diagnosis of NDDs. Specifically in ASD, it has not been extensively evaluated and, thus, we performed and compared the clinical utility of CMA, FMR1 testing, and/or whole exome sequencing (WES) in a cohort of 343 ASD patients. We achieved a global diagnostic rate of 12.8% (44/343), the majority of them being characterised by WES (33/44; 75%) compared to CMA (9/44; 20.4%) or FMR1 testing (2/44; 4.5%). Taking into account the age at which genetic testing was carried out, we identified a causal genetic alteration in 22.5% (37/164) of patients over 5 years old, but only in 3.9% (7/179) of patients under this age. Our data evidence the higher diagnostic power of WES compared to CMA in the study of ASD and support the implementation of WES as a first-tier test for the genetic diagnosis of this disorder, when there is no suspicion of fragile X syndrome.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Chuphong Thongnak ◽  
Areerat Hnoonual ◽  
Duangkamol Tangviriyapaiboon ◽  
Suchaya Silvilairat ◽  
Apichaya Puangpetch ◽  
...  

Autism spectrum disorder (ASD) has a strong genetic basis, although the genetics of autism is complex and it is unclear. Genetic testing such as microarray or sequencing was widely used to identify autism markers, but they are unsuccessful in several cases. The objective of this study is to identify causative variants of autism in two Thai families by using whole-exome sequencing technique. Whole-exome sequencing was performed with autism-affected children from two unrelated families. Each sample was sequenced on SOLiD 5500xl Genetic Analyzer system followed by combined bioinformatics pipeline including annotation and filtering process to identify candidate variants. Candidate variants were validated, and the segregation study with other family members was performed using Sanger sequencing. This study identified a possible causative variant for ASD, c.2951G>A, in the FGD6 gene. We demonstrated the potential for ASD genetic variants associated with ASD using whole-exome sequencing and a bioinformatics filtering procedure. These techniques could be useful in identifying possible causative ASD variants, especially in cases in which variants cannot be identified by other techniques.


2019 ◽  
Vol 70 (2) ◽  
pp. 219-229 ◽  
Author(s):  
Jian Jiao ◽  
Manxue Zhang ◽  
Pingyuan Yang ◽  
Yan Huang ◽  
Xiao Hu ◽  
...  

AbstractAutism spectrum disorder (ASD) is a neurodevelopmental disorder with high phenotypic and genetic heterogeneity. Whole-exome sequencing studies have shown that de novo single-nucleotide variations (SNVs) play an important role in sporadic ASD. The present study aimed to search for de novo SNVs using whole-exome sequencing in 59 unrelated Chinese ASD sporadic trios, and found 24 genes (including five reported ASD candidate genes CACNA1D, ACHE, YY1, TTN, and FBXO11) with de novo harmful SNVs. Five genes (CACNA1D, JAK2, ACHE, MAPK7, and PRKAG2) classified as “medium-confidence” genes were found to be related to ASD using the Phenolyzer gene analysis tool, which predicts the correlation between the candidate genes and the ASD phenotype. De novo SNVs in JAK2, MAPK7, and PRKAG2 were first found in ASD. Both JAK2 and MAPK7 were involved in the regulation of the MAPK signaling pathway. Gene co-expression and inter-gene interaction networks were constructed and gene expression data in different brain regions were further extracted, revealing that JAK2 and MAPK7 genes were associated with certain previously reported ASD genes and played an important role in early brain development. The findings of this study suggest that the aforementioned five reported ASD genes and JAK2 and MAPK7 may be related to ASD susceptibility. Further investigations of expression studies in cellular and animal models are needed to explore the mechanism underlying the involvement of JAK2 and MAPK7 in ASD.


2021 ◽  
Vol 22 (24) ◽  
pp. 13439
Author(s):  
Lucia Pia Bruno ◽  
Gabriella Doddato ◽  
Floriana Valentino ◽  
Margherita Baldassarri ◽  
Rossella Tita ◽  
...  

Intellectual disability (ID) is characterized by impairments in the cognitive processes and in the tasks of daily life. It encompasses a clinically and genetically heterogeneous group of neurodevelopmental disorders often associated with autism spectrum disorder (ASD). Social and communication abilities are strongly compromised in ASD. The prevalence of ID/ASD is 1–3%, and approximately 30% of the patients remain without a molecular diagnosis. Considering the extreme genetic locus heterogeneity, next-generation sequencing approaches have provided powerful tools for candidate gene identification. Molecular diagnosis is crucial to improve outcome, prevent complications, and hopefully start a therapeutic approach. Here, we performed parent–offspring trio whole-exome sequencing (WES) in a cohort of 60 mostly syndromic ID/ASD patients and we detected 8 pathogenic variants in genes already known to be associated with ID/ASD (SYNGAP1, SMAD6, PACS1, SHANK3, KMT2A, KCNQ2, ACTB, and POGZ). We found four de novo disruptive variants of four novel candidate ASD/ID genes: MBP, PCDHA1, PCDH15, PDPR. We additionally selected via bioinformatic tools many variants in unknown genes that alone or in combination can contribute to the phenotype. In conclusion, our data confirm the efficacy of WES in detecting pathogenic variants of known and novel ID/ASD genes.


Author(s):  
Adam L. Numis ◽  
Gilberto da Gente ◽  
Elliott H. Sherr ◽  
Hannah C. Glass

Abstract Background The contribution of pathogenic gene variants with development of epilepsy after acute symptomatic neonatal seizures is not known. Methods Case–control study of 20 trios in children with a history of acute symptomatic neonatal seizures: 10 with and 10 without post-neonatal epilepsy. We performed whole-exome sequencing (WES) and identified pathogenic de novo, transmitted, and non-transmitted variants from established and candidate epilepsy association genes and correlated prevalence of these variants with epilepsy outcomes. We performed a sensitivity analysis with genes associated with coronary artery disease (CAD). We analyzed variants throughout the exome to evaluate for differential enrichment of functional properties using exploratory KEGG searches. Results Querying 200 established and candidate epilepsy genes, pathogenic variants were identified in 5 children with post-neonatal epilepsy yet in only 1 child without subsequent epilepsy. There was no difference in the number of trios with non-transmitted pathogenic variants in epilepsy or CAD genes. An exploratory KEGG analysis demonstrated a relative enrichment in cell death pathways in children without subsequent epilepsy. Conclusions In this pilot study, children with epilepsy after acute symptomatic neonatal seizures had a higher prevalence of coding variants with a targeted epilepsy gene sequencing analysis compared to those patients without subsequent epilepsy. Impact We performed whole-exome sequencing (WES) in 20 trios, including 10 children with epilepsy and 10 without epilepsy, both after acute symptomatic neonatal seizures. Children with post-neonatal epilepsy had a higher burden of pathogenic variants in epilepsy-associated genes compared to those without post-neonatal epilepsy. Future studies evaluating this association may lead to a better understanding of the risk of epilepsy after acute symptomatic neonatal seizures and elucidate molecular pathways that are dysregulated after brain injury and implicated in epileptogenesis.


Sign in / Sign up

Export Citation Format

Share Document