scholarly journals Covering Rough Set Based Incremental Feature Selection for Mixed Decision System

Author(s):  
Yanyan Yang ◽  
Degang Chen ◽  
Xiao Zhang ◽  
Zhenyan Ji

Abstract Covering rough sets conceptualize different types of features with their respective generated coverings. By integrating these coverings into a single covering, covering rough set based feature selection finds valuable features from a mixed decision system with symbolic, real-valued, missing-valued, and set-valued features. Existing approaches to covering rough set based feature selection, however, are intractable to handle large mixed data. Therefore, an efficient strategy of incremental feature selection is proposed by presenting a mixed data set in sample subsets one after another. Once a new sample subset comes in, the relative discernible relation of each feature is updated to disclose incremental feature selection scheme that decides the strategies of increasing informative features and removing redundant features. The incremental scheme is applied to establish two incremental feature selection algorithms from large or dynamic mixed datasets. The first algorithm updates the feature subset upon the sequent arrival of sample subsets, and returns the reduct when no further sample subsets are obtained. The second one merely updates the relative discernible relations, and finds the reduct when no subsets are obtained. Extensive experiments demonstrate that the two proposed incremental algorithms, especially the second one speeds up covering rough set based feature selection without sacrificing too much classification performance.

2018 ◽  
Vol 7 (2) ◽  
pp. 75-84 ◽  
Author(s):  
Shivam Shreevastava ◽  
Anoop Kumar Tiwari ◽  
Tanmoy Som

Feature selection is one of the widely used pre-processing techniques to deal with large data sets. In this context, rough set theory has been successfully implemented for feature selection of discrete data set but in case of continuous data set it requires discretization, which may cause information loss. Fuzzy rough set theory approaches have also been used successfully to resolve this issue as it can handle continuous data directly. Moreover, almost all feature selection techniques are used to handle homogeneous data set. In this article, the center of attraction is on heterogeneous feature subset reduction. A novel intuitionistic fuzzy neighborhood models have been proposed by combining intuitionistic fuzzy sets and neighborhood rough set models by taking an appropriate pair of lower and upper approximations and generalize it for feature selection, supported with theory and its validation. An appropriate algorithm along with application to a data set has been added.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Jing Zhang ◽  
Guang Lu ◽  
Jiaquan Li ◽  
Chuanwen Li

Mining useful knowledge from high-dimensional data is a hot research topic. Efficient and effective sample classification and feature selection are challenging tasks due to high dimensionality and small sample size of microarray data. Feature selection is necessary in the process of constructing the model to reduce time and space consumption. Therefore, a feature selection model based on prior knowledge and rough set is proposed. Pathway knowledge is used to select feature subsets, and rough set based on intersection neighborhood is then used to select important feature in each subset, since it can select features without redundancy and deals with numerical features directly. In order to improve the diversity among base classifiers and the efficiency of classification, it is necessary to select part of base classifiers. Classifiers are grouped into several clusters by k-means clustering using the proposed combination distance of Kappa-based diversity and accuracy. The base classifier with the best classification performance in each cluster will be selected to generate the final ensemble model. Experimental results on three Arabidopsis thaliana stress response datasets showed that the proposed method achieved better classification performance than existing ensemble models.


Information ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 187
Author(s):  
Rattanawadee Panthong ◽  
Anongnart Srivihok

Liver cancer data always consist of a large number of multidimensional datasets. A dataset that has huge features and multiple classes may be irrelevant to the pattern classification in machine learning. Hence, feature selection improves the performance of the classification model to achieve maximum classification accuracy. The aims of the present study were to find the best feature subset and to evaluate the classification performance of the predictive model. This paper proposed a hybrid feature selection approach by combining information gain and sequential forward selection based on the class-dependent technique (IGSFS-CD) for the liver cancer classification model. Two different classifiers (decision tree and naïve Bayes) were used to evaluate feature subsets. The liver cancer datasets were obtained from the Cancer Hospital Thailand database. Three ensemble methods (ensemble classifiers, bagging, and AdaBoost) were applied to improve the performance of classification. The IGSFS-CD method provided good accuracy of 78.36% (sensitivity 0.7841 and specificity 0.9159) on LC_dataset-1. In addition, LC_dataset II delivered the best performance with an accuracy of 84.82% (sensitivity 0.8481 and specificity 0.9437). The IGSFS-CD method achieved better classification performance compared to the class-independent method. Furthermore, the best feature subset selection could help reduce the complexity of the predictive model.


2018 ◽  
Vol 6 (1) ◽  
pp. 58-72
Author(s):  
Omar A. M. Salem ◽  
Liwei Wang

Building classification models from real-world datasets became a difficult task, especially in datasets with high dimensional features. Unfortunately, these datasets may include irrelevant or redundant features which have a negative effect on the classification performance. Selecting the significant features and eliminating undesirable features can improve the classification models. Fuzzy mutual information is widely used feature selection to find the best feature subset before classification process. However, it requires more computation and storage space. To overcome these limitations, this paper proposes an improved fuzzy mutual information feature selection based on representative samples. Based on benchmark datasets, the experiments show that the proposed method achieved better results in the terms of classification accuracy, selected feature subset size, storage, and stability.


Machines ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 65 ◽  
Author(s):  
Jingwei Too ◽  
Abdul Abdullah ◽  
Norhashimah Mohd Saad ◽  
Nursabillilah Mohd Ali

Electromyography (EMG) has been widely used in rehabilitation and myoelectric prosthetic applications. However, a recent increment in the number of EMG features has led to a high dimensional feature vector. This in turn will degrade the classification performance and increase the complexity of the recognition system. In this paper, we have proposed two new feature selection methods based on a tree growth algorithm (TGA) for EMG signals classification. In the first approach, two transfer functions are implemented to convert the continuous TGA into a binary version. For the second approach, the swap, crossover, and mutation operators are introduced in a modified binary tree growth algorithm for enhancing the exploitation and exploration behaviors. In this study, short time Fourier transform (STFT) is employed to transform the EMG signals into time-frequency representation. The features are then extracted from the STFT coefficient and form a feature vector. Afterward, the proposed feature selection methods are applied to evaluate the best feature subset from a large available feature set. The experimental results show the superiority of MBTGA not only in terms of feature reduction, but also the classification performance.


2020 ◽  
Vol 39 (3) ◽  
pp. 4473-4489
Author(s):  
H.I. Mustafa ◽  
O.A. Tantawy

Attribute reduction is considered as an important processing step for pattern recognition, machine learning and data mining. In this paper, we combine soft set and rough set to use them in applications. We generalize rough set model and introduce a soft metric rough set model to deal with the problem of heterogeneous numerical feature subset selection. We construct a soft metric on the family of knowledge structures based on the soft distance between attributes. The proposed model will degrade to the classical one if we specify a zero soft real number. We also provide a systematic study of attribute reduction of rough sets based on soft metric. Based on the constructed metric, we define co-information systems and consistent co-decision systems, and we provide a new method of attribute reductions of each system. Furthermore, we present a judgement theorem and discernibility matrix associated with attribute of each type of system. As an application, we present a case study from Zoo data set to verify our theoretical results.


2019 ◽  
Vol 5 ◽  
pp. e237 ◽  
Author(s):  
Davide Nardone ◽  
Angelo Ciaramella ◽  
Antonino Staiano

In this work, we propose a novel Feature Selection framework called Sparse-Modeling Based Approach for Class Specific Feature Selection (SMBA-CSFS), that simultaneously exploits the idea of Sparse Modeling and Class-Specific Feature Selection. Feature selection plays a key role in several fields (e.g., computational biology), making it possible to treat models with fewer variables which, in turn, are easier to explain, by providing valuable insights on the importance of their role, and likely speeding up the experimental validation. Unfortunately, also corroborated by the no free lunch theorems, none of the approaches in literature is the most apt to detect the optimal feature subset for building a final model, thus it still represents a challenge. The proposed feature selection procedure conceives a two-step approach: (a) a sparse modeling-based learning technique is first used to find the best subset of features, for each class of a training set; (b) the discovered feature subsets are then fed to a class-specific feature selection scheme, in order to assess the effectiveness of the selected features in classification tasks. To this end, an ensemble of classifiers is built, where each classifier is trained on its own feature subset discovered in the previous phase, and a proper decision rule is adopted to compute the ensemble responses. In order to evaluate the performance of the proposed method, extensive experiments have been performed on publicly available datasets, in particular belonging to the computational biology field where feature selection is indispensable: the acute lymphoblastic leukemia and acute myeloid leukemia, the human carcinomas, the human lung carcinomas, the diffuse large B-cell lymphoma, and the malignant glioma. SMBA-CSFS is able to identify/retrieve the most representative features that maximize the classification accuracy. With top 20 and 80 features, SMBA-CSFS exhibits a promising performance when compared to its competitors from literature, on all considered datasets, especially those with a higher number of features. Experiments show that the proposed approach may outperform the state-of-the-art methods when the number of features is high. For this reason, the introduced approach proposes itself for selection and classification of data with a large number of features and classes.


As the new technologies are emerging, data is getting generated in larger volumes high dimensions. The high dimensionality of data may rise to great challenge while classification. The presence of redundant features and noisy data degrades the performance of the model. So, it is necessary to extract the relevant features from given data set. Feature extraction is an important step in many machine learning algorithms. Many researchers have been attempted to extract the features. Among these different feature extraction methods, mutual information is widely used feature selection method because of its good quality of quantifying dependency among the features in classification problems. To cope with this issue, in this paper we proposed simplified mutual information based feature selection with less computational overhead. The selected feature subset is experimented with multilayered perceptron on KDD CUP 99 data set with 2- class classification, 5-class classification and 4-class classification. The accuracy is of these models almost similar with less number of features.


Feature selection in multispectral high dimensional information is a hard labour machine learning problem because of the imbalanced classes present in the data. The existing Most of the feature selection schemes in the literature ignore the problem of class imbalance by choosing the features from the classes having more instances and avoiding significant features of the classes having less instances. In this paper, SMOTE concept is exploited to produce the required samples form minority classes. Feature selection model is formulated with the objective of reducing number of features with improved classification performance. This model is based on dimensionality reduction by opt for a subset of relevant spectral, textural and spatial features while eliminating the redundant features for the purpose of improved classification performance. Binary ALO is engaged to solve the feature selection model for optimal selection of features. The proposed ALO-SVM with wrapper concept is applied to each potential solution obtained during optimization step. The working of this methodology is tested on LANDSAT multispectral image.


Sentiment analysis plays a major role in e-commerce and social media these days. Due to the increasing growth of social media, a huge number of peoples and users send their reviews through the Internet and several other sources. Analyzing this data is challenging in today's life. In this paper new normalization based feature selection method is proposed and the topic of interest here is to select the relevant features and perform the classification of the data and find the accuracy. Stability of the data is considered as the most important challenge in analyzing the sentiments. In this paper investigating the sentiments and selecting the relevant features from the data set places a major role. The aim is to work with the vector-based feature selection and check the classification performance using recurrent networks. In this paper, text mining depends on feature retrieval methods to improve accuracy and propose a single matrix normalization method to reduce the dimensions. The proposed method performs data preprocessing or sentiment classification and features reduction to improve accuracy. The proposed method achieves better accuracy than the N-gram feature selection method. The experimental results show that the proposed method has better accuracy than other traditional feature selection approaches and that the proposed method can decrease the implementation time.


Sign in / Sign up

Export Citation Format

Share Document