scholarly journals Combined application of biochar and selenium alleviates cadmium toxicity in peanuts and enriches selenium content in peanut grains.

Author(s):  
Shiwei Shao ◽  
Bing Ma ◽  
Liuhuan Ai ◽  
Lei Zhang

Abstract Cadmium (Cd) pollution in soil and particularly in peanuts has attracted global concern and requires urgent attention. Selenium (Se) can alleviate Cd toxicity; however, the underlying mechanisms are not completely understood. Therefore, two varieties of peanut (Arachis hypogaea Linn.) Huayu 23 and Huayu 20 were chosen as the target crops for this study. A pot experiment was conducted to investigate the effects of two Se application methods combined with biochar on the accumulation of Cd and Se, and the best application method was identified. In addition, the role of Se in alleviating Cd toxicity in peanuts was studied. The results indicated that both Se and biochar decreased the Cd content in peanuts and alleviated Cd toxicity. However, the combined application of foliar Se and biochar significantly increased the peanut biomass by 71.50–110.46%, increased the grain yield of Huayu 23 by 0.38–0.47 fold, and Huayu 20 by 2.37–3.47 fold. Additionally, Cd content in peanut grains was decreased by 26.68–50.07%, and Se content was increased by 31.57–99.75 folds. Biochar can decrease the absorption of Cd from the soil, while Se can increase the accumulation of Cd in cell vacuoles by increasing glutathione and phytochelatin to decrease the movement of Cd into the grains. Therefore, our results indicate that the combined application of foliar Se and biochar can effectively promote the enrichment of Se in peanuts and suppress Cd toxicity.

Children ◽  
2019 ◽  
Vol 6 (11) ◽  
pp. 127
Author(s):  
Kathryn E Speer ◽  
Nenad Naumovski ◽  
Stuart Semple ◽  
Andrew J McKune

Decreased physical activity (PA) is a global concern contributing to the rise in cardiometabolic diseases. One potential mechanism linking insufficient PA and poor health is dysregulated autonomic nervous system (ANS) activity. This relationship is established in adults and PA recommendations, with specific exercise prescription guidelines, have been proposed to overcome this societal health burden. However, research on the benefits and underlying mechanisms of exercise on ANS activity in children <18 years old is limited. This review aimed to describe the optimal exercise “dose” and potential mechanisms of action that exercise may pose on enhancing child ANS activity, represented by heart rate variability (HRV). PubMed, Web of Science and Google Scholar were searched for articles examining the influence of exercise on child HRV. Various exercise duration and frequency combinations appear to improve HRV indices, primarily those representing parasympathetic influence. Furthermore, both aerobic and resistance training benefit HRV through potentially different mechanisms with intensity proposed to be important for exercise prescription. Findings indicate that exercise is a crucial lifestyle modification with protective and therapeutic effects on cardiometabolic health associated with improvements in child ANS activity. Exercise programming must consider the various components including mode, intensity and population characteristics to optimize ANS health.


2014 ◽  
Vol 60 (3) ◽  
pp. 121-131 ◽  
Author(s):  
Surasak Siripornadulsil ◽  
Lalita Thanwisai ◽  
Wilailak Siripornadulsil

Cupriavidus taiwanensis KKU2500-3 is a cadmium (Cd)-tolerant bacterial strain that was previously isolated from rice fields contaminated with high levels of Cd. In 500 μmol/L CdCl2, the KKU2500-3 strain grew slower and with a more prolonged lag-phase than when grown in the absence of Cd. A proteomic approach was used to characterize the protein expression in the Cd-tolerant bacteria C. taiwanensis KKU2500-3 during growth under Cd stress. When compared with the untreated cells, a total of 982 differentially expressed protein spots were observed in the CdCl2-treated cells, and 59 and 10 spots exhibited >2- and >4-fold changes, respectively. The level of up- and downregulation varied from 2.01- to 11.26-fold and from 2.01- to 5.34-fold, respectively. Of the 33 differentially expressed protein spots analyzed by MALDI TOF MS/MS, 19 spots were successfully identified, many of which were involved in stress responses. The most highly upregulated protein (+7.95-fold) identified was the chaperone GroEL, which indicated that this factor likely contributed to the bacterial survival and growth in response to Cd toxicity. Detection of the downregulated protein flagellin (–3.52-fold) was consistent with the less effective ATP-mediated and flagella-driven motility. The flagella-losing cells were also observed in the Cd-treated bacteria when analyzed by scanning electron microscopy. Thus, the Cd-stressed cells may downregulate pathways involving ATP utilization in favor of other mechanisms in response to Cd toxicity. When the KKU2500-3 strain was grown in the presence of Cd, H2S was not detected, suggesting a possible role of the sulfur in precipitation with Cd. Apart from a general response, no specific process could be determined using the present proteomic approach. However, the potential role of protein folding-mediated GroEL, flagella-mediated motility and CdS biotransformation in Cd toxicity response observed in this study as well as the extent of Cd-tolerant mechanisms using other methods could facilitate the future application of this strain in addressing Cd environmental contamination.


2021 ◽  
Author(s):  
Tao Zhang ◽  
Jingui Xiao ◽  
Yongsheng Zhao ◽  
Yifan Zhang ◽  
Yaqi Jie ◽  
...  

Abstract Background: Understanding the cadmium (Cd) resistance mechanism is crucial for combating the phytotoxicity of Cd and meeting the increasing food demand daily. A classic symptom of Cd toxicity is root growth inhibition. Results: Using two wheat genotypes (Cd tolerant genotype T207 and Cd sensitive genotype S276) with differing root growths in response to Cd, we conducted comparative physiological and transcriptomic analyses and exogenous application tests to interpret Cd detoxification mechanisms. S276 accumulated more H2O2, O2-, and malonaldehyde than T207. Catalase activity and levels of ascorbic acid (AsA) and glutathione (GSH) were higher, whereas superoxide dismutase and peroxidase activities were lower in T207 than in S276. Transcriptome analysis showed that the expression of RBOHA, RBOHC, and RBOHE significantly increased, whereas that of RBOHB markedly decreased by Cd treatment. The transcriptional levels of 22 genes encoding RBOH were higher, and that of 11 genes were lower in T207 than in S276. The transcription of genes involved in the AsA-GSH cycle was profoundly reshaped by Cd treatment; 124 genes were higher and 43 genes were lower in T207 than in S276. Exogenous combined application of AsA and GSH alleviated Cd toxicity by scavenging excess ROS and coordinately modulating root length and branching, especially in S276.Conclusions: These results indicate that the AsA-GSH cycle fundamentally and vigorously influences plant defense against Cd toxicity, which provides valuable information for further clarification of the mechanisms underlying Cd detoxification.


2020 ◽  
Vol 10 (2) ◽  
pp. 184-202 ◽  
Author(s):  
Velid Unsal ◽  
Tahir Dalkiran ◽  
Mustafa Çiçek ◽  
Engin Kölükçü

Cadmium (Cd) is a significant ecotoxic heavy metal that adversely affects all biological processes of humans, animals and plants. Exposure to acute and chronic Cd damages many organs in humans and animals (e.g. lung, liver, brain, kidney, and testes). In humans, the Cd concentration at birth is zero, but because the biological half-life is long (about 30 years in humans), the concentration increases with age. The industrial developments of the last century have significantly increased the use of this metal. Especially in developing countries, this consumption is higher. Oxidative stress is the imbalance between antioxidants and oxidants. Cd increases reactive oxygen species (ROS) production and causes oxidative stress. Excess cellular levels of ROS cause damage to proteins, nucleic acids, lipids, membranes and organelles. This damage has been associated with various diseases. These include cancer, hypertension, ischemia/perfusion, cardiovascular diseases, chronic obstructive pulmonary disease, diabetes, insulin resistance, acute respiratory distress syndrome, idiopathic pulmonary fibrosis, asthma, skin diseases, chronic kidney disease, eye diseases, neurodegenerative diseases (amyotrophic lateral sclerosis, Parkinson’s disease, Alzheimer’s disease, and Huntington disease). Natural antioxidants are popular drugs that are used by the majority of people and have few side effects. Natural antioxidants play an important role in reducing free radicals caused by Cd toxicity. Our goal in this review is to establish the relationship between Cd and oxidative stress and to discuss the role of natural antioxidants in reducing Cd toxicity.


2008 ◽  
Vol 24 (4) ◽  
pp. 218-225 ◽  
Author(s):  
Bertram Gawronski ◽  
Roland Deutsch ◽  
Etienne P. LeBel ◽  
Kurt R. Peters

Over the last decade, implicit measures of mental associations (e.g., Implicit Association Test, sequential priming) have become increasingly popular in many areas of psychological research. Even though successful applications provide preliminary support for the validity of these measures, their underlying mechanisms are still controversial. The present article addresses the role of a particular mechanism that is hypothesized to mediate the influence of activated associations on task performance in many implicit measures: response interference (RI). Based on a review of relevant evidence, we argue that RI effects in implicit measures depend on participants’ attention to association-relevant stimulus features, which in turn can influence the reliability and the construct validity of these measures. Drawing on a moderated-mediation model (MMM) of task performance in RI paradigms, we provide several suggestions on how to address these problems in research using implicit measures.


2015 ◽  
Vol 27 (4) ◽  
pp. 159-169 ◽  
Author(s):  
Elsbeth D. Asbeek Brusse ◽  
Marieke L. Fransen ◽  
Edith G. Smit

Abstract. This study examined the effects of disclosure messages in entertainment-education (E-E) on attitudes toward hearing protection and attitude toward the source. In addition, the (mediating) role of the underlying mechanisms (i.e., transportation, identification, and counterarguing) was studied. In an experiment (N = 336), three different disclosure messages were compared with a no-disclosure condition. The results show that more explicit disclosure messages negatively affect transportation and identification and stimulate the generation of counterarguments. In addition, the more explicit disclosure messages affect both attitude measures via two of these processes (i.e., transportation and counterarguing). Less explicit disclosure messages do not have this effect. Implications of the findings are discussed.


2020 ◽  
Vol 27 (6) ◽  
pp. 955-982 ◽  
Author(s):  
Kyoung Sang Cho ◽  
Jang Ho Lee ◽  
Jeiwon Cho ◽  
Guang-Ho Cha ◽  
Gyun Jee Song

Background: Neuroinflammation plays a critical role in the development and progression of various neurological disorders. Therefore, various studies have focused on the development of neuroinflammation inhibitors as potential therapeutic tools. Recently, the involvement of autophagy in the regulation of neuroinflammation has drawn substantial scientific interest, and a growing number of studies support the role of impaired autophagy in the pathogenesis of common neurodegenerative disorders. Objective: The purpose of this article is to review recent research on the role of autophagy in controlling neuroinflammation. We focus on studies employing both mammalian cells and animal models to evaluate the ability of different autophagic modulators to regulate neuroinflammation. Methods: We have mostly reviewed recent studies reporting anti-neuroinflammatory properties of autophagy. We also briefly discussed a few studies showing that autophagy modulators activate neuroinflammation in certain conditions. Results: Recent studies report neuroprotective as well as anti-neuroinflammatory effects of autophagic modulators. We discuss the possible underlying mechanisms of action of these drugs and their potential limitations as therapeutic agents against neurological disorders. Conclusion: Autophagy activators are promising compounds for the treatment of neurological disorders involving neuroinflammation.


2019 ◽  
Vol 26 (5) ◽  
pp. 837-854 ◽  
Author(s):  
Effimia Zacharia ◽  
Nikolaos Papageorgiou ◽  
Adam Ioannou ◽  
Gerasimos Siasos ◽  
Spyridon Papaioannou ◽  
...  

During the last few years, a significant number of studies have attempted to clarify the underlying mechanisms that lead to the presentation of atrial fibrillation (AF). Inflammation is a key component of the pathophysiological processes that lead to the development of AF; the amplification of inflammatory pathways triggers AF, and, in tandem, AF increases the inflammatory state. Indeed, the plasma levels of several inflammatory biomarkers are elevated in patients with AF. In addition, the levels of specific inflammatory biomarkers may provide information regarding to the AF duration. Several small studies have assessed the role of anti-inflammatory treatment in atrial fibrillation but the results have been contradictory. Large-scale studies are needed to evaluate the role of inflammation in AF and whether anti-inflammatory medications should be routinely administered to patients with AF.


2020 ◽  
Vol 17 (1) ◽  
pp. 63-80
Author(s):  
Athina Chasapi ◽  
Kostas Balampanis ◽  
Eleni Kourea ◽  
Fotios Kalfaretzos ◽  
Vaia Lambadiari ◽  
...  

Background: Estrogen receptor β (ERβ) plays an important role in human metabolism and some of its metabolic actions are mediated by a positive “cross-talk” with Nuclear Factor of Activated T cells (NFAT) and the key metabolic transcriptional coregulator Transcriptional Intermediary Factor 2 (TIF2). Introduction: Our study is an “in situ” morphological evaluation of the communication between ERβ, NFAT and TIF2 in morbid obesity. Potential correlations with clinicopathological parameters and with the presence of diabetes and non-alcoholic fatty liver disease (NAFLD) were also explored. The aim of the present study was to determine the role of ERβ and NFAT in the underlying pathophysiology of obesity and related comorbidities. We have investigated the expression of specific proteins using immunochemistry methodologies. Methods: Our population consists of 50 morbidly obese patients undergoing planned bariatric surgery, during which biopsies were taken from visceral adipose tissue (VAT), subcutaneous adipose tissue (SAT), skeletal muscle (SM), extramyocellular adipose tissue (EMAT) and liver and the differential protein expression was evaluated by immunohistochemistry. Results: We demonstrated an extensive intra- and inter-tissue co-expression network, which confirms the tissue-specific and integral role of each one of the investigated proteins in morbid obesity. Moreover, a beneficial role of ERβ and NFATc1 against NAFLD is implicated, whereas the distinct roles of TIF2 still remain an enigma. Conclusions: We believe that our findings will shed light on the complex underlying mechanisms and that the investigated biomarkers could represent future targets for the prevention and therapy of obesity and its comorbidities.


Sign in / Sign up

Export Citation Format

Share Document