Effect of Combined Application of Nitrogen and Phosphorus on Photosynthesis Parameters at Grain-filling Stage and Grain Yield in Winter Wheat

2015 ◽  
Vol 50 (1) ◽  
pp. 47
Author(s):  
Huang Caixia ◽  
Chai Shouxi ◽  
Zhao Deming ◽  
Chang Lei ◽  
Cheng Hongbo ◽  
...  
PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7738
Author(s):  
Zhaoan Sun ◽  
Shuxia Wu ◽  
Biao Zhu ◽  
Yiwen Zhang ◽  
Roland Bol ◽  
...  

Information on the homogeneity and distribution of 13carbon (13C) and nitrogen (15N) labeling in winter wheat (Triticum aestivum L.) is limited. We conducted a dual labeling experiment to evaluate the variability of 13C and 15N enrichment in aboveground parts of labeled winter wheat plants. Labeling with 13C and 15N was performed on non-nitrogen fertilized (−N) and nitrogen fertilized (+N, 250 kg N ha−1) plants at the elongation and grain filling stages. Aboveground parts of wheat were destructively sampled at 28 days after labeling. As winter wheat growth progressed, δ13C values of wheat ears increased significantly, whereas those of leaves and stems decreased significantly. At the elongation stage, N addition tended to reduce the aboveground δ13C values through dilution of C uptake. At the two stages, upper (newly developed) leaves were more highly enriched with 13C compared with that of lower (aged) leaves. Variability between individual wheat plants and among pots at the grain filling stage was smaller than that at the elongation stage, especially for the −N treatment. Compared with those of 13C labeling, differences in 15N excess between aboveground components (leaves and stems) under 15N labeling conditions were much smaller. We conclude that non-N fertilization and labeling at the grain filling stage may produce more uniformly 13C-labeled wheat materials, whereas the materials were more highly 13C-enriched at the elongation stage, although the δ13C values were more variable. The 15N-enriched straw tissues via urea fertilization were more uniformly labeled at the grain filling stage compared with that at the elongation stage.


2016 ◽  
Vol 36 (5) ◽  
Author(s):  
李玉 LI Yu ◽  
丁焕新 DING Huanxin ◽  
丁秀文 DING Xiuwen ◽  
殷毅凡 YIN Yifan ◽  
孙影 SUN Ying ◽  
...  

Author(s):  
Adnan Al-ghawry ◽  
Attila Yazar ◽  
Mustafa Unlu ◽  
Celaleddin Barutcular ◽  
Yeşim Bozkurt Çolak

Abstract A field experiment was carried out to evaluate the effect of different conventional and supplemental irrigation strategies on leaf stomatal conductance (gs) and chlorophyll content (SPAD) yield and irrigation water productivity (IWP) of wheat using sprinkler line source in 2014 and 2015 in the Mediterranean region. The irrigation strategies were, supplemental irrigation (SI) during flowering and grain filling (SIFG), SI during grain filling (SIG), SI during flowering (SIF) and conventional irrigation (CI). These strategies were conducted under four irrigation levels 25, 50, 75, 100% and a rain-fed as control. The results indicated that CI100 and CI75 produced the greater grain yield and IWP, respectively. CI100 resulted in the increased chlorophyll content by 8.8% over rain-fed. The results confirmed that the SPAD and stomatal conductance values were not equally sensitive to water stress during growth stages. The wheat crop suffered a greater SPAD and gs reductions when the water stress occurred during the grain filling stage (SIF strategy) compared to other strategies, which means that the grain filling stage is more sensitive and effective to decrease the yield of winter wheat. The higher grain yields were achieved when the seasonal mean gs reached 207.4 mmol/m2s in CI and 169.2 mmol/m2s in SI, and the stomatal closure responded well to low, moderate and severe drought treatments. The leaf stomatal conductance (gs) was correlated linearly with grain yield. These relations could be used as a physiological indicator to evaluate water stress effect on the growth and productivity of wheat.


2019 ◽  
Vol 11 (2) ◽  
pp. 277-282
Author(s):  
Abolfazl NASSERI ◽  
Hossein Ali FALLAHI ◽  
Vahid REZAVERDINEJAD

Single or double irrigations of wheat are necessary to obtain optimum yield in a humid region with insufficient rainfall for agricultural production. Therefore, the hereby study was conducted with the aim of analysis of water productivity under rainfed and (single or double) irrigated conditions in a Mediterranean environment during 11 cropping years. There were investigated four treatments for irrigation management of wheat viz. rainfed without irrigation (T0), single irrigation at the flowering stage (T1), single irrigation at the grain filling stage (T2) and double irrigation at the flowering and grain filling stages (T3). Results revealed that the highest water productivity and optimum yield were acquired with single irrigation at the grain filling stage. This scheme caused an increase of 20% in grain yield relative to yield from rainfed condition. Rainfall, grain yield and water productivity of rainfed wheat were analyzed over 11 years and averaged 3,614 m3 ha-1, 1,970 kg ha-1 and 0.63 kg m-3, respectively. Results also showed that single or double irrigation had a high compensation effect on yield loss from water stress. Irrigation water productivity (1.31 kg m-3), water productivity (0.68 kg m-3) and irrigation ratio (2.2) indices determined for the 11 years. Water productivity of rainfed wheat by single irrigation at grain filling stage increased as 10% during 11 years.


2021 ◽  
Vol 67 (No. 2) ◽  
pp. 71-76
Author(s):  
Milan Mirosavljević ◽  
Sanja Mikić ◽  
Ankica Kondić Špika ◽  
Vesna Župunski ◽  
Rong Zhou ◽  
...  

High temperature decreases winter wheat grain yield by reducing the grain number and grain weight. The effect of heat stress on spike grain distribution and weight of individual grains within spike and spikelets was less studied. Our aim is to identify influence of high temperatures during different phenological stages on spike grain distribution and weight and to explore genotypic variation of the studied wheat cultivars. Within this study, a controlled experiment was conducted with 12 different winter wheat cultivars under heat stress at anthesis and mid-grain filling stage. The results showed that spike grain weight, thousand-grain weight and grain number per spike decreased moderately in treatments with individual heat stress at anthesis and mid-grain filling period, respectively, which decreased severely in the multiple heat stressed plants at both stages compared with the control treatment. Heat stress decreased number of spikelets with grains. Grain weight at the G1, G2 and G3 positions had a positive relationship with spike grain weight. Among the studied Serbian wheat cultivars Subotičanka and Renesansa were identified as the most heat tolerant and sensitive, respectively. Heat tolerance of the studied cultivars should be based on the cultivar capacity to retain higher grain weight, and to maintain production of distal spikelet grains.


Author(s):  
Pappu Khatik ◽  
J. X. Massey ◽  
Shrimohan Meena

A field experiment was conducted during kharif season of 2013 at Udaipur (Rajasthan) to find out the effect of nitrogen scheduling and cultivars on yield attributes, yield and soil fertility status after harvest of sorghum. Treatment consisted two cultivars (V1: CSH 16 and V2: CSV 20) and five nitrogen schedules (N1: 50% at sowing as basal + 50% at 30 DAS, N2: 50% at sowing as basal + 25% at 30 DAS + 25% at boot leaf stage, N3: 25% at sowing as basal + 50% at 30 DAS + 25% at boot leaf stage, N4: 25% at sowing as basal + 50% at 30 DAS + 15% at boot leaf stage + 10% at grain filling stage, N5: 25% at sowing as basal + 45% at 30 DAS + 5% foliar spray at 45 DAS + 15 % at boot leaf stage + 10% at grain filling stage) were assigned in a factorial randomized block design. The results revealed that the cultivar CSH 16 recorded significantly higher number of grains per panicle, 1000 grain weight, grain yield (1521 kg/ha), harvest index (13.17) and nitrogen content in plant, whereas significantly higher number of primaries per panicle, stover yield (11141 kg/ha) and available nitrogen in soil were recorded in CSV 20. Application of nitrogen in N2 schedule (50% at sowing as basal + 25% at 30 DAS + 25% at boot-leaf stage) had marked influence on yield attributes, yield and nitrogen content in plant when compared to rest of the nitrogen schedules. Therefore, it was concluded that significantly higher grain yield was recorded in cultivar CSH 16 and N2 schedule of nitrogen application from sorghum.


2021 ◽  
Vol 8 (03) ◽  
pp. 154-160
Author(s):  
Tran Loc Thuy ◽  
Tran Ngoc Thach ◽  
Tran Thi Thanh Xa ◽  
Chau Thanh Nha ◽  
Vo Thi Tra My ◽  
...  

Environmental stress trigger a variety of rice plant response, ranging from alters seed set, grain yield and grain quality during flowering and grain filling stage.  Efforts are required to improve our understanding of the impact of heat stress on rice production, which are essential strategies in rice cultivation. This article investigated the seed set, yield components and grain yield of Vietnamese rice cultivars (Indica germplasm) under high temperature environment during the flowering and grain filling stage. Six rice cultivars, including popular cultivars and new cultivars of Cuu Long Delta Rice Research Institute, and one popular extraneous cultivar with differences in maturing time, were grown in pots at high temperature (HT) and natural temperature condition as control (CT). All rice cultivars were subjected to the high temperature starting from the heading stage to the harvest maturity, applied by greenhouse effect. The greenhouse has about 25 cm window opening on 3 sides for air ventilation. The seed set rate of the heat-sensitive rice genotypes decreased significantly under HT, leading to a significant reduction in grain yield. The lowest seed set was recorded in “OM4900” (44.3%) and “OM18” (39.9%) under high temperature environment. The lower yield in all rice cultivars at an elevated temperature resulted in a dramatic decrease of filled grains and contributed to a loss of 1000-grain weight. ‘“OM892” is a potential rice cultivar for heat tolerant breeding program due to the seed set percentage was above 80% in both HT and CT conditions. High temperature during the grain filling stage resulted in a decreased amylose and increased chalkiness for all OM cultivars.


Sign in / Sign up

Export Citation Format

Share Document