scholarly journals Heat Transfer Analysis For Oscillating Flow of Magnetized Fluid By Using The Modified Prabhakar-Like Fractional Derivatives

Author(s):  
Ali Raza ◽  
Sami Ullah Khan ◽  
M. Ijaz Khan ◽  
Essam Roshdy El-Zahar

Abstract In this analysis, an unsteady and incompressible flow of magnetized fluid in presence of heat transfer has been presented with fractional simulations. The oscillating plate with periodically variation has induced the flow. The model is formulated in terms of partial differential equations (PDE’s). The traditional PDEs cannot analyze and examine the physical behavior of flow parameters with memory effects. On this end, the solution approach is followed with the efficient mathematical fractional technique namely Prabhakar fractional derivative. The non-dimensional leading equations are transformed into the fractional model and then solved with the help of the Laplace transformation scheme. The effects and behavior of significant physical and fractional parameters are analyzed graphically and numerically. As a result, we have concluded that the temperature and velocity profiles decrease with the enhancement of fractional parameters. Furthermore, with time both (temperature and velocity fields)decreasing away from the plate and asymptotically increases along y-direction, which also satisfies the corresponding conditions.

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Rashid Ayub ◽  
Shahzad Ahmad ◽  
Muhammad Imran Asjad ◽  
Mushtaq Ahmad

In this article, an unsteady free convection flow of MHD viscous fluid over a vertical rotating plate with Newtonian heating and heat generation is analyzed. The dimensionless governing equations for temperature and velocity fields are solved using the Laplace transform technique. Analytical solutions are obtained for the temperature and components of velocity fields. The obtained solutions satisfy the initial and boundary conditions. Some physical aspects of flow parameters on the fluid motion are presented graphically.


2020 ◽  
Vol 98 (1) ◽  
pp. 89-101 ◽  
Author(s):  
Nauman Raza ◽  
Muhammad Asad Ullah

A comparative analysis is carried out to study the unsteady flow of a Maxwell fluid in the presence of Newtonian heating near a vertical flat plate. The fractional derivatives presented by Caputo and Caputo–Fabrizio are applied to make a physical model for a Maxwell fluid. Exact solutions of the non-dimensional temperature and velocity fields for Caputo and Caputo–Fabrizio time-fractional derivatives are determined via the Laplace transform technique. Numerical solutions of partial differential equations are obtained by employing Tzou’s and Stehfest’s algorithms to compare the results of both models. Exact solutions with integer-order derivative (fractional parameter α = 1) are also obtained for both temperature and velocity distributions as a special case. A graphical illustration is made to discuss the effect of Prandtl number Pr and time t on the temperature field. Similarly, the effects of Maxwell fluid parameter λ and other flow parameters on the velocity field are presented graphically, as well as in tabular form.


Author(s):  
Mikhail Iarmonov ◽  
Olga Novozhilova ◽  
Pavel Bokov ◽  
A. V. Beznosov

Temperature and velocity fields in high-temperature lead coolant flows in a circular clearance for controlled oxygen impurity content in a flow were experimentally studied at the Nizhny Novgorod State Technical University by R.E. Alekseev (NNSTU). Temperature and velocity fields were simultaneously studied in “cold” and “hot” parts of the circuit in the following operating conditions: the lead temperature is t = 400–550 °C, the thermodynamic activity of oxygen is a = 10−5–100; the Peclet number is Pe = 500–7000, the coolant flow velocity is w = 0.1–1.5 m/s, and the average heat flux is q = 50–160 kW/m2. It has been found that the oxygen impurity content and characteristics of protective oxide coatings affect temperature and velocity fields in round and circular channels. This is due to the fact that oxygen in a coolant and oxide coatings on the surfaces limiting a liquid metal flow influence characteristics of the wall boundary region. The heat transfer process that occurs when HLMC transversely flows around heat exchange pipes is investigated now at the NNSTU. The experimental facility is a combination of two high-temperature liquid-metal stands, i.e., FT-2 with the lead coolant and FT-1 with the lead-bismuth coolant combined with an experimental section. The temperature of a heat-exchange surface is measured by thermocouples of diameter 1 mm mounted in walls of heat-exchange pipes. Velocity and temperature fields in a high-temperature HLMC flow are measured by special sensors placed in the flow cross section between rows of heat-exchange pipes. Heat transfer characteristics and temperature and velocity fields in a high-temperature lead coolant flow are studied in the following operating conditions: the lead temperature is t = 450–500 °C, the thermodynamic activity of oxygen is a = 10−5–100, and the coolant flow rate through the experimental setup is Q = 3–6 m3/h, which corresponds to coolant flow velocities of V = 0.4–0.8 m/s. Integrated experimental studies of characteristics of the heat transfer that occurs when the lead coolant transversely or obliquely flows around pipes have been carried out for the first time and the dependences Nu = f(Pe) for controlled content of thermodynamically active oxygen impurity and sediments of impurities have been obtained. It is assumed that the obtained experimental data on distribution of velocity and temperature fields in a HLMC flow will permit to study heat transfer processes and to use them for developing program codes for engineering calculations of heat exchange surfaces (steam generators) with a HLMC flow around them.


2021 ◽  
Vol 13 (5) ◽  
pp. 168781402110236
Author(s):  
Adnan ◽  
Umar Khan ◽  
Naveed Ahmed ◽  
Syed Tauseef Mohyud-Din

Currently, thermal improvement in the nanofluids over a curved Riga sheet is a topic of interest and attained popularity among the researchers. Therefore, the colloidal suspension of water suspended by [Formula: see text] and [Formula: see text] over a curved Riga surface is modeled for the heat transfer analysis. The nondimensionalization of the model is accomplished via invertible variables. On the basis of dynamic viscosities and thermal conductivities of [Formula: see text] and [Formula: see text] nanoparticles, two nanofluid models developed over a semi-infinite region. Then, the models solved numerically and found graphical results for the flow characteristics, thermophysical properties and local thermal performance rate by altering the pertinent flow parameters. It is examined that the fluid motion rapidly decreases for [Formula: see text] and momentum boundary layer region decreases. The squeezed and curvature parameters lead to reduce in the nanofluid velocity. The temperature of more magnetized enhances significantly. Thermophysical characteristics of the nanofluids enhance for higher volumetric fraction factor. More heat transfer at the Riga surface for higher M and R.


1992 ◽  
Vol 242 ◽  
pp. 419-440 ◽  
Author(s):  
P. G. Daniels

A thermal boundary layer, in which the temperature and velocity fields are coupled by buoyancy, flows along a horizontal, insulated wall. For sufficiently low local Froude number the solution terminates in a singularity with rising skin friction and falling pressure. The structure of the singularity is obtained and the results are compared with numerical solutions of the horizontal boundary-layer equations. A novel feature of the analysis is that the powers of the streamwise coordinate involved in the structure of the singularity do not appear to be simple rational numbers and are determined from the solution of a pair of ordinary differential equations which govern the flow in an inner viscous region close to the wall. Modifications of the theory are noted for cases where either the temperature or a non-zero heat transfer are specified at the wall.


1991 ◽  
Vol 113 (4) ◽  
pp. 823-829 ◽  
Author(s):  
M. K. Drost ◽  
M. D. White

Local entropy generation rates related to viscous dissipation and heat transfer across finite temperature differences can be calculated for isotropic and Newtonian fluids from the temperature and velocity fields in a thermal process. This study consisted of the development of a numerical procedure for the prediction of local entropy generation rates and the application of that procedure to convective heat transfer associated with a fluid jet impinging on a heated wall. The procedure involved expanding an existing computation fluid dynamics computer code to include the numerical calculation of local entropy generation. The modified code was bench-marked against analytical solutions and was then used to simulate a cold fluid jet impinging on a hot wall. The results show that the calculation of local entropy generation is feasible and can provide useful information.


Author(s):  
Muhammad Danish Ikram ◽  
Muhammad Asjad Imran ◽  
Yu Ming Chu ◽  
Ali Akgül

Introduction: The nanofluid is novelty of nanotechnology to overcome the difficulties of heat transfer in several manufacturing and engineering areas. Fractional calculus has many applications in nearly all fields of science and engineering which comprises electrochemistry, dispersion and viscoelasticity. Objectives: This paper focused on the heat transfer of hybrid nanofluid in two vertical parallel plates and presented a comparison between fractional operators. Methods: The fractional viscous fluid model is considered with physical initial and boundary conditions for the movement occurrences. The analytical solutions were obtained via Laplace transform method for the concentration, temperature and velocity fields. After that we presented a comparison between Atangana-Baleanu (ABC), Caputo (C) and Caputo-Fabrizio (CF) fractional operators. Results: The comparison of different base fluids (Water, kerosene, Engine Oil) is discussed graphically for temperature and velocity. It is resulted that due to high thermal conductivity in water, temperature and velocity are high. While engine oil has maximum viscosity than water and kerosene, so temperature and velocity are very low. Due to the thermal conductivity improving with the enrichment of hybrid nanoparticles, so the Temperature is increased and since viscosity increased, so the velocity is reduced. Conclusion: Atangana-Baleanu (ABC) fractional operator gives better memory effect of concentration, temperature and velocity fields than Caputo (C) and Caputo-Fabrizio (CF). Temperature and velocity of water with hybridized nanoparticles is high in comparison with kerosene and engine oil.


Author(s):  
Liping Pang ◽  
Baomin Sun

A numerical simulation investigation into the furnace and horizontal chimney process in a utility boiler is presented. The work is based on the commercial software FLUENT 6.1. Flow, chemistry, energy, conservation and radiation models are combined with the FLUNENT solver to simulate the process inside the furnace. Radiation and convection models are considered in the horizontal heater. The reheater is processed as a limited thickness heater and the convective heat transfer is considered in this numerical simulation. The temperature and velocity fields are calculated to unveil the process inside and outside the furnace. The result shows that the fouling in reheater is formed because of the temperature and velocity field in the flue gas passage. A limited test is done to validate the numerical simulation.


2018 ◽  
Vol 194 ◽  
pp. 01028
Author(s):  
Alexander Kondakov

The mathematical modeling of temperature and velocity fields in the system “the heat source - environment - the object of heating” was conducted. The impact assessment of thermo-gravitational convection to the temperature field in comparison with the model of conductive heat transfer was done.


Sign in / Sign up

Export Citation Format

Share Document