scholarly journals Virtual Thermocouple: A Non-Invasive Multipoint Product Temperature Measurement for Lyophilization

Author(s):  
Xiaofan Jiang ◽  
Petr Kazarin ◽  
Michael Sinanis ◽  
Nithin Raghunathan ◽  
Alina Alexeenko ◽  
...  

Abstract Monitoring product temperature during lyophilization is of critical importance, especially during the process development stage, as the final product may be jeopardized if its process temperature exceeds a threshold value. While conventional thermocouples can track product temperature, they are invasive and can significantly alter the freezing and drying behavior. In this work, a new methodology for non-invasive product temperature monitoring and drying behavior during the entire lyophilization process is proposed and experimentally validated. The method is based on a new flexible wireless multi-point temperature sensing probe that is attached to the outside of the vial. Combining the wirelessly-collected data with advanced multi-physics simulations allows the accurate extraction of the product temperature non-invasively.

2020 ◽  
Vol 87 (9) ◽  
pp. 553-563
Author(s):  
Jörg Gebhardt ◽  
Guruprasad Sosale ◽  
Subhashish Dasgupta

AbstractAccurate and responsive non-invasive temperature measurements are enablers for process monitoring and plant optimization use cases in the context of Industry 4.0. If their performance is proven for large classes of applications, such measurement principles can replace traditional invasive measurements. In this paper we describe a two-step model to estimate the process temperature from a pipe surface temperature measurement. This static case model is compared to and enhanced by computational fluid dynamic (CFD) calculations to predict transient situations. The predictions of the approach are validated by means of controlled experiments in a laboratory environment. The experimental results demonstrate the efficacy of the model, the responsiveness of the pipe surface temperature, and that state of the art industrial non-invasive sensors can achieve the performance of invasive thermowells. The non-invasive sensors are then used to demonstrate the performance of the model in industrial applications for cooling fluids and steam.


1987 ◽  
Vol 20 (6) ◽  
pp. 32-39 ◽  
Author(s):  
K T V Grattan

The subject area of fibre optic sensing is one in which there has been shown a very rapid expansion of interest over the last few years. Many novel techniques are appearing in the literature and some products are available to the industrial user. The background to fibre optic means of temperature sensing and some recent developments will be reviewed in this paper.


2012 ◽  
Vol 38 (6) ◽  
pp. 523-530 ◽  
Author(s):  
Susan Barnason ◽  
Jennifer Williams ◽  
Jean Proehl ◽  
Carla Brim ◽  
Melanie Crowley ◽  
...  

Processes ◽  
2018 ◽  
Vol 7 (1) ◽  
pp. 9 ◽  
Author(s):  
Shu Yang ◽  
San Kiang ◽  
Parham Farzan ◽  
Marianthi Ierapetritou

Mixing is considered as a critical process parameter (CPP) during process development due to its significant influence on reaction selectivity and process safety. Nevertheless, mixing issues are difficult to identify and solve owing to their complexity and dependence on knowledge of kinetics and hydrodynamics. In this paper, we proposed an optimization methodology using Computational Fluid Dynamics (CFD) based compartmental modelling to improve mixing and reaction selectivity. More importantly, we have demonstrated that through the implementation of surrogate-based optimization, the proposed methodology can be used as a computationally non-intensive way for rapid process development of reaction unit operations. For illustration purpose, reaction selectivity of a process with Bourne competitive reaction network is discussed. Results demonstrate that we can improve reaction selectivity by dynamically controlling rates and locations of feeding in the reactor. The proposed methodology incorporates mechanistic understanding of the reaction kinetics together with an efficient optimization algorithm to determine the optimal process operation and thus can serve as a tool for quality-by-design (QbD) during product development stage.


RSC Advances ◽  
2015 ◽  
Vol 5 (105) ◽  
pp. 86219-86236 ◽  
Author(s):  
Xiangfu Wang ◽  
Qing Liu ◽  
Yanyan Bu ◽  
Chun-Sheng Liu ◽  
Tao Liu ◽  
...  

Optical temperature sensing is a promising method to achieve the contactless temperature measurement and large-scale imaging. The current status of optical thermometry of rare-earth ions doped phosphors is reviewed in detail.


Sign in / Sign up

Export Citation Format

Share Document