scholarly journals Arabidopsis CPR5 Plays a Role in Regulating Nucleocytoplasmic Transport of mRNAs in Ethylene Signaling Pathway

Author(s):  
Jiacai Chen ◽  
Xinying Sui ◽  
Binran Ma ◽  
Yuetong Li ◽  
Na Li ◽  
...  

Abstract The ETR1 receptor plays a predominant role in ethylene signaling in Arabidopsis thaliana. Previous studies showed that both RTE1 and CPR5 can directly bind to the ETR1 receptor and regulate ethylene signaling. RTE1 was suggested to promote the ETR1 receptor signaling by influencing its conformation, but little is known about the regulatory mechanism of CPR5 in ethylene signaling. In this study, we presented data showing that both RTE1 and CPR5 bound to the N-terminal domains of ETR1, and regulated ethylene signaling via the ethylene receptor. On the other hand, the research provided evidence indicating that CPR5 could act as a nucleoporin to regulate the ethylene-related mRNAs export out of the nucleus, while RTE1 or its homolog (RTH) had no effect on the nucleocytoplasmic transport of mRNAs. Nuclear qRT-PCR analysis and poly(A)-mRNA in situ hybridization showed that defect of CPR5 restricted nucleocytoplasmic transport of mRNAs. These results advance our understanding of the regulatory mechanism of CPR5 in ethylene signaling.

2019 ◽  
Author(s):  
Jiacai Chen ◽  
Yanchong Yu ◽  
Xinying Sui ◽  
Longfei Qiao ◽  
Chun-Hai Dong

AbstractETR1 is the major ethylene receptor in Arabidopsis thaliana. Previous studies showed that RTE1 and CPR5 can bind to ETR1 and play regulatory roles in ethylene signaling. RTE1 has been suggested to promote ETR1 signal transduction by influencing the conformation of ETR1, but little is known about the mechanism of CPR5 on the regulation of ETR1 signaling. In this study, we showed that both CPR5 and RTE1 could interact with the N-terminal transmembrane domains of ETR1, and CPR5 needs at least three transmembrane domains of ETR1 while RTE1 needs only two for the binding. As CPR5 has also been shown to be localized in the nuclear membrane and might act as a nucleoporin, we analyzed the effects of CPR5 on the nucleocytoplasmic transport of ethylene-related mRNAs using poly(A)-mRNA in situ hybridization and real-time quantitative PCR (qPCR), and the results indicated that CPR5 could selectively regulate the nucleocytoplasmic transport of mRNAs in ethylene signaling pathway. In contrast, the nucleoporin mutants (nup160, nup96-1 and nup96-2) dramatically accumulated all the examined mRNAs in the nucleus. In conclusion, the present study provides evidence demonstrating that CPR5 regulates ethylene signaling through interacting with the ETR1 receptor and controlling the mRNAs nucleocytoplasmic transport in ethylene signaling pathway.Key messageThis study reveals that CPR5 is involved in the regulation of ethylene signaling via two different ways: interacting with the N-terminal domains of ERT1 and controlling the nucleocytoplasmic transport of mRNAs in ethylene signaling pathway.


2021 ◽  
Vol 15 (2) ◽  
pp. 130-139
Author(s):  
Daniele Rosa Xavier ◽  
Auricelio Alves de Macedo ◽  
Larissa Sarmento dos Santos ◽  
Taynan Dulce da Silva Rosa ◽  
Ellainy Maria Conceição Silva ◽  
...  

Histopathological and spermatogenesis classification by Johnsen is widely used in the germinal epithelium maturation analysis, besides identifying pathological alterations able to cause subfertility and even infertility. The aim of this study was to analyze cell-differentiation histopathological data and to correlate them with expression of PRM-1, TNP-2, 17β-HSD3, LHR, generic MHC-I, MIC-B, NC1 and NC3 genes, involved in bovine spermatogenesis using qRT-PCR from testicular parenchyma. Based on Johnsen’s criteria, the results showed normal spermatogenic activity in these animals, classified at 6, 7 and 8 scores. The qRT-PCR analysis expression showed that MHC-I (generic) gene was less expressed than all the other genes in evaluated scores (p < 0.05) and, PRM-1 and TNP-2 were the most expressed genes (p < 0.05). The PRM-1 gene expression was significantly higher than TNP-2 (p < 0.05). Comparing scores, 17β-HSD3 gene expression was lower (p < 0.05) in score 6 when compared to scores 7 and 8 animals. It was also observed that PRM-1 expression was lower in score 6 when compared to 7, as well as TNP-2 gene was less expressed in the score 6 (p < 0.05) when compared to 7 and 8 scores. Our results demonstrated that MHC I (generic), MIC-B, NC1, NC3, and LHR genes are poorly expressed in bovine testis, suggesting their marginal action on spermatogenesis. Instead, PRM-1, TNP-2, and 17β-HSD3 expression were higher, supporting the notion that these genes can act directly on the germ cells differential development during bovine spermatogenesis.


2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Rui Hu ◽  
Yankai Yu ◽  
Haining Wang

Abstract Purpose To explore the specific role and regulatory mechanism of oxysterol binding protein like 5 (OSBPL5) in non-small cell lung cancer (NSCLC). Methods and results Quantitative real-time polymerase chain reaction (qRT-PCR) analysis demonstrated that OSBPL5 expression was notably elevated in NSCLC tissues and cell lines, and Kaplan–Meier analysis manifested that high OSBPL5 expression was closely related to the poor prognosis of NSCLC patients. Besides, according to the results from western blot analysis, cell counting kit-8, EdU and Transwell assays, knockdown of OSBPL5 suppressed NSCLC cell proliferation, migration, invasion and epithelial-mesenchymal transition (EMT) process. Additionally, by performing qRT-PCR analysis, luciferase reporter and RNA pull-down assays, we verified that OSBPL5 was a downstream target of miR-526b-3p and long noncoding RNA (lncRNA) LMCD1-AS1 served as a sponge for miR-526b-3p. Moreover, from rescue assays, we observed that OSBPL5 overexpression offset LMCD1-AS1 knockdown-mediated inhibition in cell proliferation, migration, invasion and EMT in NSCLC. Conclusions This paper was the first to probe the molecular regulatory mechanism of OSBPL5 involving the LMCD1-AS1/miR-526b-3p axis in NSCLC and our results revealed that the LMCD1-AS1/miR-526b-3p/OSBPL5 axis facilitates NSCLC cell proliferation, migration, invasion and EMT, which may offer a novel therapeutic direction for NSCLC.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xin Xie ◽  
Shaokang Yue ◽  
Baosheng Shi ◽  
Hongxue Li ◽  
Yuhai Cui ◽  
...  

SQUAMOSA Promoter Binding Protein (SBP) family genes act as central players to regulate plant growth and development with functional redundancy and specificity. Addressing the diversity of the SBP family in crops is of great significance to precisely utilize them to improve agronomic traits. Blueberry is an important economic berry crop. However, the SBP family has not been described in blueberry. In the present study, twenty VcSBP genes were identified through data mining against blueberry transcriptome databases. These VcSBPs could be clustered into eight groups, and the gene structures and motif compositions are divergent among the groups and similar within each group. The VcSBPs were differentially expressed in various tissues. Intriguingly, 10 VcSBPs were highly expressed at green fruit stages and dramatically decreased at the onset of fruit ripening, implying that they are important regulators during early fruit development. Computational analysis showed that 10 VcSBPs were targeted by miR156, and four of them were further verified by degradome sequencing. Moreover, their functional diversity was studied in Arabidopsis. Noticeably, three VcSBPs significantly increased chlorophyll accumulation, and qRT-PCR analysis indicated that VcSBP13a in Arabidopsis enhanced the expression of chlorophyll biosynthetic genes such as AtDVR, AtPORA, AtPORB, AtPORC, and AtCAO. Finally, the targets of VcSBPs were computationally identified in blueberry, and the Y1H assay showed that VcSBP13a could physically bind to the promoter region of the chlorophyll-associated gene VcLHCB1. Our findings provided an overall framework for individually understanding the characteristics and functions of the SBP family in blueberry.


2020 ◽  
Author(s):  
Jixin Shou ◽  
Haidong Gao ◽  
Sen Cheng ◽  
Bingbing Wang ◽  
Haibo Guan

Abstract Background: LncRNA HOXA-AS2 has been found in the literature to deteriorate glioblastoma. However, its regulatory mechanism is yet to be fully investigated. Our study focused chiefly on the interaction and role of the HOXA-AS2/miR-885-5p/RBBP4 axis in the development of glioblastoma. Methods: qRT-PCR analysis was performed to detect the expression of lncRNA, miRNA and mRNA in glioblastoma tissues and cells. Dual-luciferase assay, RIP assay and RNA pull-down assay were later carried out to reveal the interactions among HOXA-AS2, miR-885-5p and RBBP4. After that, CCK-8 assay, BrdU assay, nude mice xenografting assay, western blot assay, and flow cytometry were carried out to analyze the effect of the HOXA-AS2/miR-885-5p/RBBP4 axis on glioblastoma samples. Results: HOXA-AS2 and RBBP4 were found to be overexpressed in glioblastoma. Experimental results showed that HOXA-AS2 and RBBP4 contributed to the tumorigenesis of glioblastoma cells. However, miR-885-5p was observed to be downregulated in glioblastoma. Findings also indicated that HOXA-AS2 could negatively regulate miR-885-5p, thereby enhancing RBBP4 expression. Conclusion: Overall, HOXA-AS2 promoted the tumorigenesis of glioblastoma by targeting and regulating miR-885-5p to induce the expression of RBBP4.


2020 ◽  
Author(s):  
Jixin Shou ◽  
Haidong Gao ◽  
Sen Cheng ◽  
Bingbing Wang ◽  
Haibo Guan

Abstract Background: LncRNA HOXA-AS2 has been found in the literature to deteriorate glioblastoma. However, its regulatory mechanism is yet to be fully investigated. Our study focused chiefly on the interaction and role of the HOXA-AS2/miR-885-5p/RBBP4 axis in the development of glioblastoma. Methods: qRT-PCR analysis was performed to detect the expression of lncRNA, miRNA and mRNA in glioblastoma tissues and cells. Dual-luciferase assay, RIP assay and RNA pull-down assay were later carried out to reveal the interactions among HOXA-AS2, miR-885-5p and RBBP4. After that, CCK-8 assay, BrdU assay, nude mice xenografting assay, western blot assay, and flow cytometry were carried out to analyze the effect of the HOXA-AS2/miR-885-5p/RBBP4 axis on glioblastoma samples. Results: HOXA-AS2 and RBBP4 were found to be overexpressed in glioblastoma. Experimental results showed that HOXA-AS2 and RBBP4 contributed to the tumorigenesis of glioblastoma cells. However, miR-885-5p was observed to be downregulated in glioblastoma. Findings also indicated that HOXA-AS2 could negatively regulate miR-885-5p, thereby enhancing RBBP4 expression. Conclusion: Overall, HOXA-AS2 promoted the tumorigenesis of glioblastoma by targeting and regulating miR-885-5p to induce the expression of RBBP4.


Author(s):  
J. I. Bennetch

In a recent study of the superplastic forming (SPF) behavior of certain Al-Li-X alloys, the relative misorientation between adjacent (sub)grains proved to be an important parameter. It is well established that the most accurate way to determine misorientation across boundaries is by Kikuchi line analysis. However, the SPF study required the characterization of a large number of (sub)grains in each sample to be statistically meaningful, a very time-consuming task even for comparatively rapid Kikuchi analytical techniques.In order to circumvent this problem, an alternate, even more rapid in-situ Kikuchi technique was devised, eliminating the need for the developing of negatives and any subsequent measurements on photographic plates. All that is required is a double tilt low backlash goniometer capable of tilting ± 45° in one axis and ± 30° in the other axis. The procedure is as follows. While viewing the microscope screen, one merely tilts the specimen until a standard recognizable reference Kikuchi pattern is centered, making sure, at the same time, that the focused electron beam remains on the (sub)grain in question.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Rong Zhang ◽  
Weitao Jiang ◽  
Xin Liu ◽  
Yanan Duan ◽  
Li Xiang ◽  
...  

Abstract Background Apple replant disease (ARD) has been reported from all major fruit-growing regions of the world, and is often caused by biotic factors (pathogen fungi) and abiotic factors (phenolic compounds). In order to clarify the proteomic differences of Fusarium moniliforme under the action of phloridzin, and to explore the potential mechanism of F. moniliforme as the pathogen of ARD, the role of Fusarium spp. in ARD was further clarified. Methods In this paper, the quantitative proteomics method iTRAQ analysis technology was used to analyze the proteomic differences of F. moniliforme before and after phloridzin treatment. The differentially expressed protein was validated by qRT-PCR analysis. Results A total of 4535 proteins were detected, and 293 proteins were found with more than 1.2 times (P< 0.05) differences. In-depth data analysis revealed that 59 proteins were found with more than 1.5 times (P< 0.05) differences, and most proteins were consistent with the result of qRT-PCR. Differentially expressed proteins were influenced a variety of cellular processes, particularly metabolic processes. Among these metabolic pathways, a total of 8 significantly enriched KEGG pathways were identified with at least 2 affiliated proteins with different abundance in conidia and mycelium. Functional pathway analysis indicated that up-regulated proteins were mainly distributed in amino sugar, nucleotide sugar metabolism, glycolysis/ gluconeogenesis and phagosome pathways. Conclusions This study is the first to perform quantitative proteomic investigation by iTRAQ labeling and LC-MS/MS to identify differentially expressed proteins in F. moniliforme under phloridzin conditions. The results confirmed that F. moniliforme presented a unique protein profile that indicated the adaptive mechanisms of this species to phloridzin environments. The results deepened our understanding of the proteome in F. moniliforme in response to phloridzin inducers and provide a basis for further exploration for improving the efficiency of the fungi as biocontrol agents to control ARD.


2021 ◽  
Vol 9 (7) ◽  
pp. 1390
Author(s):  
Masafumi Noda ◽  
Naho Sugihara ◽  
Yoshimi Sugimoto ◽  
Ikue Hayashi ◽  
Sachiko Sugimoto ◽  
...  

Cariogenic bacteria, such as Streptococcus (S.) mutans and S. sobrinus, produce insoluble and sticky glucans as a biofilm material. The present study demonstrates that a lactic acid bacterium (LAB) named BM53-1 produces a substance that inhibits the sticky glucan synthesis. The BM53-1 strain was isolated from a flower of Actinidia polygama and identified as Lactobacillus reuteri. The substance that inhibits sticky glucan synthesis does not exhibit antibacterial activity against S. mutans. The cariogenic S. mutans produces glucans under the control of three glucosyltransferase (GTF) enzymes, named GtfB, GtfC, and GtfD. Although GtfB and GtfC produce insoluble glucans, GtfD forms soluble glucans. Through quantitative reverse-transcriptional (qRT)-PCR analysis, it was revealed that the BM53-1-derived glucan-production inhibitor (GI) enhances the transcriptions of gtfB and gtfC genes 2- to 7-fold at the early stage of cultivation. However, that of gtfD was not enhanced in the presence of the GI, indicating that the glucan stickiness produced by S. mutans was significantly weaker in the presence of the GI. Our result demonstrates that Lb. reuteri BM53-1 is useful to prevent dental caries.


Sign in / Sign up

Export Citation Format

Share Document