scholarly journals The Analysis of The Application and Mechanism of Traditional Chinese Medicine in Osteoarthritis Based on Data Mining and Network Pharmacology

Author(s):  
Jie YANG ◽  
Dijin JIAO ◽  
Guoguang Zhang ◽  
Juntong LIU ◽  
Chao QU ◽  
...  

Abstract Background: Using Data Mining to retrieve the core drug of osteoarthritis in clinic, predicting the drug molecular action target through the Network Pharmacology, combining with the related targets of osteoarthritis to identify the key nodes of the interaction, exploring the pharmacological mechanism of Traditional Chinese Medicine against osteoarthritis and other possible mechanisms of actions. Methods: Pubmed, CNKI, VIP, CBM and WanFang Database was used to retrieve the commonly used therapeutic formulations for osteoarthritis patients in clinical, and screen out the core drugs through the Ancient and Modern Medical Case Cloud Platform and software Gephi, filtered out the core drug molecules and targets combined with TCMSP database and the targets of osteoarthritis in Genecard, OMIM database, impoting those datas into R project and Cytoscape to construct the intersection model of Drug molecule-osteoarthritis, carrying out PPI network and GO and KEGG enrichment analysis with String database. Vina molecular docking was implemented to draw molecular docking diagram, and the results were analyzed after comprehensive analysis. Results: The core drug pairs were identified as "Eucommiae Cortex - Achyranthis Bidentatae Radix" through correlation analysis, complex network analysis basing on the coefficient. "Eucommiae Cortex - Achyranthis Bidentatae Radix" can intervene cell behaviors through multiple pathways and regulate cell metabolism, cytokine synthesis, oxidative , cellular immunity as a consequence of topology analysis in String Database. Conclusions: "Eucommia bark - achyranthes" drug molecules can be combined with the target to produce hydrogen bond, hydrophobic function and Pi-Pi directly or indirectly affecting the corresponding targets, to participate in the regulation of osteogenesis and osteoclast proliferation, protect the extracellular matrix, inhibition of cell apoptosis and anti-inflammatory for resistance to osteoarthritis, also, providing the basis for interpretation of its action mechanism.

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Shiyu Ma ◽  
Lin Zheng ◽  
Lan Zheng ◽  
Xiaolan Bian

Background. “Zheng” (syndrome) is the basic unit and the basis of traditional Chinese medicine (TCM) treatment. In clinical practice, we have been able to improve the survival time and quality of life for patients with rectal cancer through the treatment of “FuZhengXiaoJi” (strengthening the Qi and reducing accumulation). Purpose. In this study, we elucidated the core prescriptions for patients with rectal cancer and Qi and blood deficiency syndrome, and we explored the potential mechanisms of the prescriptions using an integrated strategy that coupled data mining with network pharmacology. Methods. A Bron–Kerbosch (BK) algorithm was applied to find the core prescriptions. The active ingredients, targets, activated signaling pathways, and biological functions of core prescriptions were analyzed using network pharmacology and directly associated proteins were docked using molecular docking technology to elucidate the multicomponent, multitarget, and inter-related components associated with TCM systematically. Results. Data mining identified 3 core prescriptions, and most of the herbs consisted of “FuZhengXiaoJi” Fang. Network pharmacology identified 15 high-degree active ingredients among the 3 core prescriptions and 16 high-degree hub genes linked with both rectal cancer and the 3 core prescriptions. Additional Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses of these 16 targets showed that the most significant pathways were MAPK, interleukin-17, tumor necrosis factor (TNF), and vascular endothelial growth factor (VEGF) pathways. From the 16 genes, TGFB1, IL1B, IL10, IL6, PTGS2, and PPARG closely interacted with the tumor microenvironment, and PPARG, MYC, and ERBB2 were closely linked to survival. In molecular docking, quercetin, kaempferol, and lauric acid showed good binding energy to each target. Conclusion. Data mining, network pharmacology, and molecular docking may help identify core prescriptions, high-degree ingredients, and high-degree hub genes to apply to diseases and treatments. Furthermore, these studies may help discover hub genes that affect the tumor microenvironment and survival. The combination of these tools may help elucidate the relationship between herbs acting on “Zheng” (syndrome) and diseases, thus expanding the understanding of TCM mechanisms.


2021 ◽  
Author(s):  
Xue Bai ◽  
Yibo Tang ◽  
Qiang Li ◽  
Guimin Liu ◽  
Dan Liu ◽  
...  

Abstract Background: Male infertility (MI) affects almost 5% adult men worldwide, and 75% of these cases are unexplained idiopathic. There are limitations in the current treatment due to the unclear mechanism of MI, which highlight the urgent need for a more effective strategy or drug. Traditional Chinese Medicine (TCM) prescriptions have been used to treat MI for thousands of years, but their molecular mechanism is not well defined. Methods: Aiming at revealing the molecular mechanism of TCM prescriptions on MI, a comprehensive strategy integrating data mining, network pharmacology, and molecular docking verification was performed. Firstly, we collected 289 TCM prescriptions for treating MI from National Institute of TCM Constitution and Preventive Medicine for 6 years. Then, Core Chinese Materia Medica (CCMM), the crucial combination of TCM prescriptions, was obtained by the TCM Inheritance Support System from China Academy of Chinese Medical Sciences. Next, the components and targets of CCMM in TCM prescriptions and MI-related targets were collected and analyzed through network pharmacology approach.Results: The results showed that the molecular mechanism of TCM prescriptions for treating MI are regulating hormone, inhibiting apoptosis, oxidant stress and inflammatory. Estrogen signaling pathway, PI3K-Akt signaling pathway, HIF-1 signaling pathway, and TNF signaling pathway are the most important signaling pathways. Molecular docking experiments were used to further validate network pharmacology results. Conclusions: This study not only discovers CCMM and the molecular mechanism of TCM prescriptions for treating MI, but may be helpful for the popularization and application of TCM treatment.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Wancai Que ◽  
Maohua Chen ◽  
Ling Yang ◽  
Bingqing Zhang ◽  
Zhichang Zhao ◽  
...  

Abstract Background Colorectal cancer (CRC) remains one of the leading causes of cancer-related death worldwide. Gelsemium elegans Benth (GEB) is a traditional Chinese medicine commonly used for treatment for gastrointestinal cancer, including CRC. However, the underlying active ingredients and mechanism remain unknown. This study aims to explore the active components and the functional mechanisms of GEB in treating CRC by network pharmacology-based approaches. Methods Candidate compounds of GEB were collected from the Traditional Chinese Medicine@Taiwan, Traditional Chinese Medicines Integrated Database, Bioinformatics Analysis Tool for Molecular mechanism of Traditional Chinese Medicine, and published literature. Potentially active targets of compounds in GEB were retrieved from SwissTargetPrediction databases. Keywords “colorectal cancer”, “rectal cancer” and “colon cancer” were used as keywords to search for related targets of CRC from the GeneCards database, then the overlapped targets of compounds and CRC were further intersected with CRC related genes from the TCGA database. The Cytoscape was applied to construct a graph of visualized compound-target and pathway networks. Protein-protein interaction networks were constructed by using STRING database. The DAVID tool was applied to carry out Gene Ontology and Kyoto Encyclopedia of Genes and Genome pathway enrichment analysis of final targets. Molecular docking was employed to validate the interaction between compounds and targets. AutoDockTools was used to construct docking grid box for each target. Docking and molecular dynamics simulation were performed by Autodock Vina and Gromacs software, respectively. Results Fifty-three bioactive compounds were successfully identified, corresponding to 136 targets that were screened out for the treatment of CRC. Functional enrichment analysis suggested that GEB exerted its pharmacological effects against CRC via modulating multiple pathways, such as pathways in cancer, cell cycle, and colorectal cancer. Molecular docking analysis showed that the representative compounds had good affinity with the key targets. Molecular dynamics simulation indicated that the best hit molecules formed a stable protein-ligand complex. Conclusion This network pharmacology study revealed the multiple ingredients, targets, and pathways synergistically involved in the anti-CRC effect of GEB, which will enhance our understanding of the potential molecular mechanism of GEB in treatment for CRC and lay a foundation for further experimental research.


2020 ◽  
Author(s):  
WingYan Yun ◽  
Wenchao Dan ◽  
Jinlei Liu ◽  
Xinyuan Guo ◽  
Min Li ◽  
...  

Abstract BackgroundAlthough traditional Chinese medicine is safe for the clinical treatment of angiogenesis, the in vivo intervention mechanism is diverse, complex, and largely unknown. Therefore, we aimed to explore the active ingredients of traditional Chinese medicine and their mechanisms for the treatment of angiogenesis.MethodsData on angiogenesis-related targets were collected from the GeneCards, Therapeutic Target Database, Online Mendelian Inheritance in Man, DrugBank, and DisGeNET databases. These were matched to related molecular compounds and ingredients in the traditional Chinese medicine system pharmacology platform. The data were integrated; based on the condition of Degree >1 and relevant literature, a target-compound network as well as compound-medicine and target-compound-medicine networks were constructed using Cytoscape. Molecular docking was used to predict the predominant binding combination of core targets and components.ResultsWe obtained a total of 79 targets for angiogenesis, and 41 targets were matched to 3839 compounds. Then, 110 compounds were selected owing to their high correlation with angiogenesis. Fifty-five combinations in the network were obtained by molecular docking, among which PTGS2-Astragalin (-9.18 kcal/mol), KDR-Astragalin (-7.94 kcal/mol), PTGS2-quercetin (-7.41 kcal/mol), and PTGS2-myricetin (-7.21 kcal/mol) were the top combinations. These results indicated that the selected potential core compounds may have good binding activity with the core targets. Eighty new combinations were obtained from the network, and the top combinations based on affinity were KDR-beta-carotene (-10.13 kcal/mol), MMP9-beta-Sitosterol (-8.04 kcal/mol), MMP9-Astragalin (-7.82 kcal/mol), and MMP9-Diosgenin (-7.51 kcal/mol). The core targets included PTGS2, KDR, VEGFA, and MMP9. The essential components identified were astragalin, kaempferol, myricetin, quercetin, and β-sitosterol. The crucial Chinese medicines identified included Polygoni Cuspidati Rhizoma et Radix, Morus alba Root Bark, and Forsythia Fructus.ConclusionsBy systematically analysing the essential ingredients of traditional Chinese medicine and their targets, it is possible to determine their potential mechanism of action in the treatment of pathological angiogenesis. Our study provides a basis for further research and development of new therapeutics for angiogenesis.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Meng Meng ◽  
Chen Bai ◽  
Bo Wan ◽  
Luqing Zhao ◽  
Zhe Li ◽  
...  

Background and Objective. Irritable bowel syndrome (IBS) is a prevalent disorder of the gastrointestinal system with complex pathogenesis. Shenling Baizhu powder (SLBZP) is a Chinese herbal compound with multicomponent and multitarget characteristics. Increasing volumes of evidence demonstrate that it has a notable therapeutic impact on IBS. This study therefore is aimed at exploring the potential effective components of SLBZP and their mechanisms in IBS treatment utilizing network pharmacology. Methods. Metabolomics was used to detect the secondary metabolites in SLBZP; the target protein was acquired by target fishing according to the compound’s structure. The SymMap database was used to search herbal medicines for the target protein. The target gene of IBS gave rise to the common gene protein which is the potential target of SLBZP in IBS therapy. The interactions between target proteins were analyzed in a STRING database, the protein relationship network was analyzed using Cytoscape software, and the Kyoto Encyclopedia of Genes and Genomes enrichment analysis of the core target gene group was carried out in a DAVID database in order to construct the “compound-traditional Chinese medicine/molecule-target-pathway” network. Molecular docking was used to verify the core protein and its related small molecular compounds. Result. There were 129 types of secondary metabolites in SLBZP. 80 target proteins of these metabolites were potential core targets for IBS treatment including acetylcholinesterase (AChE), arachidonate-5-lipoxygenase (ALOX5), B-cell lymphoma-2 (BCL2), recombinant cyclin D1 (CCND1), and catenin-β1 (CTNNB1), among others. Results from these targets indicated that the most enriched pathway was the tumor necrosis factor (TNF) signaling pathway ( p < 0.001 ) and that the most abundant pathway was signal transduction. In the network nodes of the TNF signaling pathway, the Chinese medicines with the highest aggregation were Lablab semen album and Glycyrrhizae radix et rhizoma ( degree = 11 ). The small molecules with the highest aggregation were oxypeucedanin and 3,5,6,7,8,3 ′ ,4 ′ -heptamethoxyflavone ( degree = 4 ). Molecular docking results confirmed that daidzein 7-O-glucoside (daidzin) had the highest degree of binding to TNF proteins in the TNF signaling pathway. Conclusion. This study shows that SLBZP can treat IBS by influencing multiple targets and pathways, of which the TNF signaling pathway may be the most significant. This typifies the pharmacological characteristics of traditional Chinese medicine, i.e., multiple targets, numerous pathways, and specific therapeutic effects on diseases. SLBZP can therefore be used as a candidate drug for clinical IBS by intervening in human signal transduction.


2021 ◽  
Vol 271 ◽  
pp. 03013
Author(s):  
Yitong Yue ◽  
Shengping Xue ◽  
Zhanjun Yue ◽  
Weijin Fang ◽  
Kang Li ◽  
...  

Acne vulgaris of wind-heat in lung meridian is a common skin disease, and there are many traditional Chinese medicine prescriptions, but the mechanism is still not clear. In this paper, the literature on the treatment of acne due to wind-heat in lung meridian and the prescriptions in the patents were collected and sorted out in the past twenty years. Excel 2019 was used for medication frequency statistics, and IBM SPSS 25.0 was used for clustering analysis to obtain the core formula. Network pharmacology was used to collect the related targets of drugs and diseases, to construct the action network, and to conduct enrichment analysis. A total of 137 prescriptions and 167 drugs were obtained. The core prescriptions were Cortex mori, Folium eriobotryae, Scutellariae radix, Glycyrrhrizae radix, Fructus gardeniae, Radix rehmanniae, and Cortex moutan. The treatment of acne due to wind-heat in lung meridian should begin with clearing heat, purging the lung, cooling blood and detoxicating. The core prescriptions mainly played a role through AKT1, IL6, TP53, TNF, VEGFA, EGF targets and Kaposi's sarcoma-related herpes virus infection, measles, toxoplasmosis, EB virus infection, IL-17, MAPK and other signaling pathways, so as to provide reference for further clinical research.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Shuaihang Hu ◽  
Wenchao Dan ◽  
Jinlei Liu ◽  
Peng Ha ◽  
Tong Zhou ◽  
...  

In this study, the role of traditional Chinese medicine (TCM) in relieving epidermal growth factor receptor-tyrosine kinase inhibitor- (EGFR-TKI-) associated diarrhea was discussed by network pharmacology and data mining. Prediction of drug targets by introducing the EGFR-TKI molecular structures into the SwissTargetPrediction platform and diarrhea-related targets in the DrugBank, GeneCards, DisGeNET, and OMIM databases were obtained. Compounds in the drug-disease target intersection were screened by absorption, distribution, metabolism, and excretion parameters and Lipinski’s rule in Traditional Chinese Medicine Systems Pharmacology. TCM-containing compounds were selected, and information on the property, taste, and meridian tropism of these TCMs was summarized and analyzed. A target-compound-TCM network diagram was constructed, and core targets, compounds, and TCMs were selected. The core targets and components were docked by AutoDock Vina (Version 1.1.2) to explore the target combinations of related compounds and evaluate the docking activity of related targets and compounds. Twenty-three potential therapeutic TCM targets for the treatment of EGFR-TKI-related diarrhea were obtained. There were 339 compounds acting on potential therapeutic targets, involving a total of 402 TCMs. The results of molecular docking showed good binding between the core targets and compounds, and the binding between the core targets and compounds was similar to that of the core target and the recommended drug loperamide. TCMs have multitarget characteristics and are present in a variety of compounds used for relieving EGFR-TKI-associated diarrhea. Antitumor activity and the efficacy of alleviating diarrhea are the pharmacological basis of combining TCMs with EGFR-TKI in the treatment of non-small-cell lung cancer. The core targets, compounds, and TCMs can provide data to support experimental and clinical studies on the relief of EGFR-TKI-associated diarrhea in the future.


2021 ◽  
Vol 16 (1) ◽  
pp. 1934578X2098842
Author(s):  
Li Cheng ◽  
Fei Wang ◽  
Shun Bo Zhang ◽  
Qiu Yun You

Purpose Fufang Banlangen Keli (FBK) has been recommended for its clinical treatment of Coronavirus disease 2019 (COVID-19) and severe acute respiratory syndrome (SARS), but the mechanism of action is unclear. So, using network pharmacology and molecular docking, we studied the active components and mechanism of FBK in the treatment of COVID-19 and SARS. Methods The Encyclopedia of Traditional Chinese Medicine and Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform were used to screen the active components by oral bioactivity and drug likeness. Then, PharmMapper and SwissTargetPrediction databases were used to screen potential target genes of active components; the related target genes of COVID-19 and SARS were obtained from the GeneCards database. The intersection of the active components and disease-related targets was performed by the Venny2.1.0 database. The DAVID6.8 database and KOBAS3.0 database were used to get gene ontology (GO) function enrichment and Kyoto Encyclopedia of Genes and Genomes pathway annotation of gene targets. The “components-targets-pathways (C-T-P)” network of FBK was conducted by Cytoscape3.6.1 software. The top active components, angiotensin-converting enzyme 2 (ACE2) and SARS-CoV-2 3 Cl, were imported into AutoDock and PyMOL for molecular docking. Results From the FBK, a total of 28 active components and 73 gene targets were screened through network pharmacology. Twenty pathways were analyzed, including pathways in cancer, nod-like receptor signaling pathway, and pancreatic cancer, etc. ( P < 0.05). A total of 337 items were obtained by GO functional enrichment analysis ( P < 0.05), including 257 items for biological process, 38 items for cell composition, and 42 items for molecular function. Furthermore, molecular docking studies were performed to study potential binding between the key gene targets and selected active components. Conclusion Based on network pharmacology and molecular docking technology, qingdainone, (2Z)-2-(2-oxoindolin-3-ylidene) indolin-3-one, sinensetin, and acacetin in FBK were verified to bind to ACE2 and SARS-COV-2 3 Cl, so as to treat COVID-19 and SARS.


2021 ◽  
Author(s):  
Xiaojian Wang ◽  
Rui Wang ◽  
Ting Xu ◽  
Hongting Jin ◽  
Peijian Tong ◽  
...  

Abstract Background The lesion of marrow is a crucial factor in orthopedic diseases, which is recognized by orthopedics-traumatology expert from "Zhe-School of Chinese Medicine". The Chinese herbs of regulating marrow has been widely used to treat osteonecrosis of the femoral head (ONFH) in China, while the interaction mechanisms were still elucidated. Thus, we conducted this study to explore the underlying mechanism of the five highest-frequency Chinese herbs of regulating marrow(HF-CHRM) in the treatment of ONFH with the aid of network pharmacology(NP) and molecular docking(MD). Methods The active components and potential targets of HF-CHRM were obtained through several online databases, such as Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP), UniProt database. The gene targets related to ONFH were collected with the help of the OMIM and GeneCards disease-related databases. The "drug- component-target-disease" network and protein-protein interaction(PPI) network of the drug and disease intersecting targets were constructed by using Cytoscape software and the STRING database. R software was used for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. The MD of critical components and targets was carried out using Autodock Vina and Pymol to validate the binding affinity. Results A total of 54 active components, 1074 drug targets and 195 gene targets were obtained. There were 1219 ONFH related targets. 39 drug and disease intersection targets(representative genes: IL6, TP53, VEGFA, ESR1, IL1B) were obtained and considered potential therapeutic targets. 1619 items were obtained by the GO enrichment analysis, including 1517 biological processes, 10 cellular components and 92 molecular functions, which is mainly related to angiogenesis, bone and lipid metabolism and inflammatory reaction. The KEGG pathway enrichment analysis revealed 119 pathways, including AGE-RAGE signaling pathway, PI3K-Akt signaling pathway and IL-17 signaling pathway. MD results showed that quercetin, wogonin, and kaempferol active components had good affinity with IL6, TP53, and VEGFA core proteins. Conclusion The HF-CHRM can treat ONFH by multi-component, multi-target, and multi-pathway comprehensive action.


Sign in / Sign up

Export Citation Format

Share Document