scholarly journals Colonisation of the Colonic Mucus Gel Layer With Butyrogenic and Hydrogenotropic Bacteria in Health and Ulcerative Colitis

Author(s):  
Helen Earley ◽  
Grainne Lennon ◽  
Desmond Winter ◽  
Calvin Coffey ◽  
Ronan O'Connell

Abstract Butyrate is the primary energy source for colonocytes and is essential for mucosal integrity and repair. Butyrate deficiency as a result of colonic dysbiosis is a putative factor in ulcerative colitis (UC). Commensal microbes are butyrogenic, while others have an inhibitory effect, through hydrogenotropic activity. The aim of this study was to quantify butyrogenic and hydrogenotropic species and determine their relationship with inflammation within the colonic mucus gel layer (MGL).Mucosal brushings were obtained from 20 patients with active colitis (AC), 20 healthy controls (HC) and 14 with quiescent colitis (QUC). Abundance of each species was determined by RT-PCR. Inflammatory scores were available for each patient. Statistical analyses were performed using Mann-Whitney-U and Kruskall-Wallis tests.Butyrogenic R. hominis was more abundant in health than UC (p<0.005). Hydrogenotropic B. wadsworthia was reduced in AC compared to HC and QUC (p<0.005). An inverse correlation existed between inflammation and R. hominis (ρ -0.460, p >0.005) and B. wadsworthia (ρ -0.646, p >0.005). Other hydrogenotropic species did not widely colonise the MGL. These data support a role for butyrogenic and some species of hydrogenotropic bacteria in UC. Butyrate deficiency in UC may be related to reduced microbial production, rather than inhibition by microbial by-products.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Helen Earley ◽  
Grainne Lennon ◽  
J. Calvin Coffey ◽  
Desmond C. Winter ◽  
P. Ronan O’Connell

AbstractButyrate is the primary energy source for colonocytes and is essential for mucosal integrity and repair. Butyrate deficiency as a result of colonic dysbiosis is a putative factor in ulcerative colitis (UC). Commensal microbes are butyrogenic, while others may inhibit butyrate, through hydrogenotropic activity. The aim of this study was to quantify butyrogenic and hydrogenotropic species and determine their relationship with inflammation within the colonic mucus gel layer (MGL). Mucosal brushings were obtained from 20 healthy controls (HC), 20 patients with active colitis (AC) and 14 with quiescent colitis (QUC). Abundance of each species was determined by RT-PCR. Inflammatory scores were available for each patient. Statistical analyses were performed using Mann–Whitney-U and Kruskall-Wallis tests. Butyrogenic R. hominis was more abundant in health than UC (p < 0.005), prior to normalisation against total bacteria. Hydrogenotropic B. wadsworthia was reduced in AC compared to HC and QUC (p < 0.005). An inverse correlation existed between inflammation and R. hominis (ρ − 0.460, p < 0.005) and B. wadsworthia (ρ − 0.646, p < 0.005). Other hydrogenotropic species did not widely colonise the MGL. These data support a role for butyrogenic bacteria in UC. Butyrate deficiency in UC may be related to reduced microbial production, rather than inhibition by microbial by-products.


1997 ◽  
Vol 73 ◽  
pp. 78
Author(s):  
Mine Kinpshita ◽  
Mika Endo ◽  
Akira Yasoshima ◽  
Susumu Chishima ◽  
Kazuva Yamasaki ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Helen Earley ◽  
Grainne Lennon ◽  
Áine Balfe ◽  
J. Calvin Coffey ◽  
Desmond C. Winter ◽  
...  

Abstract Akkermansia muciniphila utilises colonic mucin as its substrate. Abundance is reduced in ulcerative colitis (UC), as is the relative proportion of sulphated mucin in the mucus gel layer (MGL). It is unknown if these phenomena are related, however reduced sulphated mucins could contribute to reduced abundance, owing to a lack of substrate. The aim of this study was to quantify A. muciniphila within the MGL and to relate these findings with markers of inflammation and the relative proportion of sulphomucin present. Colonic biopsies and mucus brushings were obtained from 20 patients with active UC (AC), 14 with quiescent UC (QUC) and 20 healthy controls (HC). A. muciniphila abundance was determined by RT-PCR. High iron diamine alcian-blue staining was performed for histological analysis. Patients with AC had reduced abundance of A. muciniphila compared to HC and QUC. A positive association was found between A. muciniphila abundance and higher percentage of sulphated mucin (ρ 0.546, p = 0.000). Lower abundances of A. muciniphila correlated with higher inflammatory scores (ρ = 0.294 (p = 0.001)). This study confirms an inverse relationship between A. muciniphila and inflammation and a positive association between A. muciniphila abundance and percentage of sulfated mucin in the MGL.


Author(s):  
Jifu Song ◽  
Zhibin Guan ◽  
Maojiang Li ◽  
Sha Sha ◽  
Chao Song ◽  
...  

MicroRNAs (miRNAs) have emerged as pivotal regulators of the development and progression of gastric cancer. Studies have shown that miR-154 is a novel cancer-associated miRNA involved in various cancers. However, the role of miR-154 in gastric cancer remains unknown. Here we aimed to investigate the biological function and the potential molecular mechanism of miR-154 in gastric cancer. We found that miR-154 was significantly downregulated in gastric cancer tissues and cell lines. The overexpression of miR-154 significantly repressed the growth and invasion of gastric cancer cells. Bioinformatics analysis and Dual-Luciferase Reporter Assay data showed that miR-154 directly targeted the 3′-untranslated region of Dishevelled‐Axin domain containing 1 (DIXDC1). Real-time quantitative polymerase chain reaction and Western blot analyses showed that miR-154 overexpression inhibited DIXDC1 expression. An inverse correlation of miR-154 and DIXDC1 was also demonstrated in gastric cancer specimens. Overexpression of miR-154 also significantly suppressed the activation of WNT signaling. Moreover, restoration of DIXDC1 expression significantly reversed the inhibitory effect of miR-154 overexpression on the cell proliferation, invasion, and WNT signaling in gastric cancer cells. Overall, these results suggest that miR-154 inhibits gastric cancer cell growth and invasion by targeting DIXDC1 and could serve as a potential therapeutic target for the treatment of gastric cancer.


2005 ◽  
Vol 51 (4) ◽  
pp. 287-291 ◽  
Author(s):  
Akira SHIMOTOYODOME ◽  
Shinichi MEGUO ◽  
Ichiro TOKIMITSU ◽  
Takashi SAKATA
Keyword(s):  

Blood ◽  
1996 ◽  
Vol 88 (4) ◽  
pp. 1277-1283 ◽  
Author(s):  
M Movassagh ◽  
J Gozlan ◽  
B Senechal ◽  
C Baillou ◽  
JC Petit ◽  
...  

We successfully infected fluorescence-activated cell-sorted CD34+ cells from normal cord blood by the human cytomegalovirus (HCMV) laboratory strain Towne. An inhibitory effect of HCMV on clonogenic myeloid progenitors was observed in primary methylcellulose cultures. After an initial 7-day liquid culture of CD34(+)-infected cells, this inhibition was further amplified in secondary methylcellulose cultures, then involving both the myeloid and erythroid lineages. Under these conditions, viral DNA was detected both in erythroid and myeloid colonies using the polymerase chain reaction (PCR), but reverse transcription PCR (RT-PCR) failed to detect viral RNA. In contrast, when CD34(+)-infected cells were maintained in liquid suspension, both immediate, early, and late transcripts were detected as soon as day 3. In addition, viral production was demonstrated in the culture supernatants, thus confirming that a complete viral cycle occurred under liquid conditions. Furthermore, by resorting cells into CD34+ and CD34- fractions, we showed by RT-PCR that viral replication took place in cells still expressing CD34 antigen, whereas no RNA was found in more differentiated cells that had subsequently lost their CD34 antigen. These findings suggest that HCMV replication can occur at the early steps of progenitor differentiation and may be involved in the viral-induced myelosuppression.


Polymers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1259 ◽  
Author(s):  
Iram Shahzadi ◽  
Andrea Fürst ◽  
Zeynep Burcu Akkus-Dagdeviren ◽  
Shumaila Arshad ◽  
Markus Kurpiers ◽  
...  

As less reactive s-protected thiomers can likely interpenetrate the mucus gel layer to a higher extent before getting immobilized via disulfide bond formation with mucins, it was the aim of this study to develop a novel type of s-protected thiomer based on the less reactive substructure cysteine-N-acetyl cysteine (Cys-NAC) in order to obtain improved mucoadhesive properties. For this purpose, two types of s-protected thiomers, polyacrylic acid-cysteine-mercaptonicotinic acid (PAA-Cys-MNA) and polyacrylic acid-cysteine-N-acetyl cysteine (PAA-Cys-NAC), were synthesized and characterized by Fourier-transform infrared spectroscopy (FT-IR) and the quantification of attached disulfide ligands. The viscosity of both products was measured in the presence of NAC and mucus. Both thiomers were also evaluated regarding swelling behavior, tensile studies and retention time on the porcine intestinal mucosa. The FT-IR spectra confirmed the successful attachment of Cys-MNA and Cys-NAC ligands to PAA. The number of attached sulfhydryl groups was in the range of 660–683 µmol/g. The viscosity of both s-protected thiomers increased due to the addition of increasing amounts of NAC. The viscosity of the mucus increased in the presence of 1% PAA-Cys-MNA and PAA-Cys-NAC 5.6- and 10.9-fold, respectively, in comparison to only 1% PAA. Both s-protected thiomers showed higher water uptake than unmodified PAA. The maximum detachment force (MDF) and the total work of adhesion (TWA) increased in the case of PAA-Cys-MNA up to 1.4- and 1.6-fold and up to 2.4- and 2.8-fold in the case of PAA-Cys-NAC. The retention of PAA, PAA-Cys-MNA, and PAA-Cys-NAC on porcine intestinal mucosa was 25%, 49%, and 76% within 3 h, respectively. The results of this study provide evidence that less reactive s-protected thiomers exhibit higher mucoadhesive properties than highly reactive s-protected thiomers.


1997 ◽  
Vol 26 (suppl 3) ◽  
pp. P8-P8
Author(s):  
J Newton ◽  
N Jordan ◽  
G Williams ◽  
A Allen ◽  
O James ◽  
...  
Keyword(s):  

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Wen-lin Xiao ◽  
Dai-zun Zhang ◽  
Hong Xu ◽  
Cui-zhu Zhuang

The aim of this study was to investigate the effect of the 7-dehydrocholesterol reductase (Dhcr7) gene and identify signaling pathways involved in regulation of embryonic palatogenesis. The expression ofDhcr7and its protein product were examined during murine normal embryonic palatogenesis via a reverse transcription polymerase chain reaction (RT-PCR) and Western blot (WB). RNA interference (RNAi) technology was used to inhibitDhcr7expression in a palatal shelf culturein vitro. The effects of Dhcr7 on palatogenesis and palatal fusion were examined by scanning electron microscopy (SEM). The expression changes of Dhcr7, Sonic Hedgehog (Shh), and bone morphogenetic protein-2 (Bmp2) were measured by RT-PCR and WB afterDhcr7gene silencing and the addition of exogenous cholesterol. The results showed that the palatal shelf failed to complete normal development and fusion whenDhcr7expression was inhibited. The inhibitory effect study of RNAi on the development of the palatal shelf supported that cholesterol supplementation did not alter the silencing of Dhcr7. Shh and Bmp2 expressions were reduced afterDhcr7gene silencing, and administration of exogenous cholesterol did not affect Dhcr7 expression; however Shh and Bmp2 expressions increased. We conclude thatDhcr7plays a role in growth of the palatal shelf and can regulate palatogenesis through alterations in the levels of Shh and Bmp2.


2016 ◽  
Vol 310 (7) ◽  
pp. F646-F655 ◽  
Author(s):  
Kazumasa Matsumoto-Miyai ◽  
Erika Yamada ◽  
Eriko Shinzawa ◽  
Yoshihisa Koyama ◽  
Shoichi Shimada ◽  
...  

Serotonin [5-hydroxytryptamine (5-HT)] is involved in both motor and sensory functions in hollow organs, especially in the gastrointestinal tract. However, the involvement of 5-HT in visceral sensation of the urinary bladder remains unknown. Because distention-induced ATP release from the urothelium plays an essential role in visceral sensation of the urinary bladder, we investigated the regulation of urothelial ATP release by the 5-HT signaling system. RT-PCR and immunohistochemical analyses of the urothelium revealed specific expression of 5-HT1D and 5-HT4 receptors. The addition of 5-HT did not affect urothelial ATP release without bladder distention, but it significantly reduced distention-induced ATP release by physiological pressure during urine storage (5 cmH2O). The inhibitory effect of 5-HT on distention-elicited ATP release was blocked by preincubation with the 5-HT1B/1D antagonist GR-127935 but not by the 5-HT4 antagonist SB-204070. mRNA encoding tryptophan hydroxylase 1 was detected in the urinary bladder by nested RT-PCR amplification, and l-tryptophan or the selective serotonin reuptake inhibitor citalopram also inhibited ATP release, indicating that 5-HT is endogenously synthesized and released in the urinary bladder. The addition of GR-127935 significantly enhanced the distention-elicited ATP release 40 min after distention, whereas SB-204070 reduced the amount of ATP release 20 min after distention. These data suggest that 5-HT4 facilitates the distention-induced ATP release at an earlier stage, whereas 5-HT1D inhibits ATP release at a later stage. The net inhibitory effect of 5-HT indicates that the action of 5-HT on the urothelium is mediated predominantly by 5-HT1D.


Sign in / Sign up

Export Citation Format

Share Document