colonic mucin
Recently Published Documents


TOTAL DOCUMENTS

94
(FIVE YEARS 12)

H-INDEX

26
(FIVE YEARS 3)

Nature ◽  
2021 ◽  
Author(s):  
Ana S. Luis ◽  
Chunsheng Jin ◽  
Gabriel Vasconcelos Pereira ◽  
Robert W. P. Glowacki ◽  
Sadie R. Gugel ◽  
...  
Keyword(s):  

2021 ◽  
pp. 030098582199665
Author(s):  
Susanne Je-Han Lin ◽  
Bailey Arruda ◽  
Eric Burrough

Swine dysentery (SD) is an enteric disease associated with strongly β-hemolytic Brachyspira spp. that cause mucohemorrhagic diarrhea primarily in grower-finisher pigs. We characterized alteration of colonic mucin composition and local cytokine expression in the colon of pigs with acute SD after B. hyodysenteriae (Bhyo) infection and fed either a diet containing 30% distillers dried grains with solubles (DDGS) or a control diet. Colonic tissue samples from 9 noninoculated pigs (Control, N = 4; DDGS, N = 5) and 10 inoculated pigs experiencing acute SD (Bhyo, N = 4; Bhyo-DDGS, N = 6) were evaluated. At the apex of the spiral colon, histochemical staining with high-iron diamine–Alcian blue revealed increased sialomucin ( P = .008) and decreased sulfomucin ( P = .027) in Bhyo pigs relative to controls, with a dietary effect for sulfomucin. Noninoculated pigs fed DDGS had greater expression of sulfomucin ( P = .002) compared to pigs fed the control diet. Immunohistochemically, there was de novo expression of mucin 5AC (MUC5AC) in the Bhyo group while mucin 2 (MUC2) expression was not significantly different between groups. RNA in situ hybridization to detect the pro-inflammatory cytokine IL-1β often showed increased expression in the Bhyo group although without statistical significance, and this was not correlated with MUC5AC or MUC2 expression, suggesting IL-1β is not a major regulator of their secretion in acute SD. Expression of the anti-inflammatory cytokine TGF-β1 was significantly suppressed in the Bhyo group compared to controls ( P = .005). This study reveals mucin and cytokine alterations in the colon of pigs with experimentally induced SD and related dietary effects of DDGS.


2021 ◽  
Author(s):  
Eric Martens ◽  
Ana Luis ◽  
Chunsheng Jin ◽  
Gabriel Pereira ◽  
Robert Glowacki ◽  
...  

Abstract Humans have co-evolved with a dense community of microbial symbionts that inhabit the lower intestine. In the colon, secreted mucus creates a physical barrier that separates these microbes from the intestinal epithelium. Some gut bacteria are able to utilize mucin glycoproteins, the main mucus component, as a nutrient source. However, it remains unclear which bacterial enzymes initiate the degradation of the highly complex O-glycans found in mucins. In the colon, these glycans are heavily sulfated, but the specific sulfatases that are active on colonic mucins have not been identified. Here, we show that sulfatases are essential to the utilization of colonic mucin O-glycans by the human gut symbiont Bacteroides thetaiotaomicron. We have characterized the activity of 12 different sulfatases encoded by this species, showing that these enzymes collectively are active on all of the known sulfate linkages in colonic O-glycans. Crystal structures of 3 enzymes provide mechanistic insight into the molecular basis of substrate-specificity. Unexpectedly, we found that a single sulfatase is essential for utilization of sulfated O-glycans in vitro and also plays a major role in vivo. Our results provide insight into the mechanisms of mucin degradation by gut bacteria, an important process for both normal microbial gut colonization and diseases such as inflammatory bowel disease (IBD). Sulfatase activity is likely to be a keystone step in bacterial mucin degradation and inhibition of these enzymes may therefore represent a viable therapeutic path for treatment of IBD and other diseases.


2020 ◽  
Vol 888 ◽  
pp. 173567
Author(s):  
Vijay Kumar ◽  
Neha Mahajan ◽  
Pragyanshu Khare ◽  
Kanthi Kiran Kondepudi ◽  
Mahendra Bishnoi

2020 ◽  
Author(s):  
Ana S. Luis ◽  
Chunsheng Jin ◽  
Gabriel Vasconcelos Pereira ◽  
Robert W. P. Glowacki ◽  
Sadie Gugel ◽  
...  

SummaryHumans have co-evolved with a dense community of microbial symbionts that inhabit the lower intestine. In the colon, secreted mucus creates a physical barrier that separates these microbes from the intestinal epithelium. Some gut bacteria are able to utilize mucin glycoproteins, the main mucus component, as a nutrient source. However, it remains unclear which bacterial enzymes initiate the degradation of the highly complex O-glycans found in mucins. In the colon, these glycans are heavily sulfated, but the specific sulfatases that are active on colonic mucins have not been identified. Here, we show that sulfatases are essential to the utilization of colonic mucin O-glycans by the human gut symbiont Bacteroides thetaiotaomicron. We have characterized the activity of 12 different sulfatases encoded by this species, showing that these enzymes collectively are active on all of the known sulfate linkages in colonic O-glycans. Crystal structures of 3 enzymes provide mechanistic insight into the molecular basis of substrate-specificity. Unexpectedly, we found that a single sulfatase is essential for utilization of sulfated O-glycans in vitro and also plays a major role in vivo. Our results provide insight into the mechanisms of mucin degradation by gut bacteria, an important process for both normal microbial gut colonization and diseases such as inflammatory bowel disease (IBD). Sulfatase activity is likely to be a keystone step in bacterial mucin degradation and inhibition of these enzymes may therefore represent a viable therapeutic path for treatment of IBD and other diseases.


Gut Microbes ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 1802209
Author(s):  
Hasinika K. A. H. Gamage ◽  
Raymond W. W. Chong ◽  
Daniel Bucio-Noble ◽  
Liisa Kautto ◽  
Anandwardhan A. Hardikar ◽  
...  

2020 ◽  
Vol 86 (20) ◽  
Author(s):  
Minori Ishida ◽  
Fu Namai ◽  
Suguru Shigemori ◽  
Shoko Kajikawa ◽  
Masami Tsukagoshi ◽  
...  

ABSTRACT Differences in individual host responses have emerged as an issue regarding the health benefits of probiotics. Here, we applied ribosome engineering (RE) technology, developed in an actinomycete study, to Lacticaseibacillus rhamnosus GG (LGG). RE can effectively enhance microbial potential by using antibiotics to induce spontaneous mutations in the ribosome and/or RNA polymerase. In this study, we identified eight types of streptomycin resistance mutations in the LGG rpsL gene, which encodes ribosomal protein S12. Notably, LGG harboring the K56N mutant (LGG-MTK56N) expressed high levels of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) on the cell surface compared with the LGG wild type (LGG-WT). GAPDH plays a key role in colonic mucin adhesion. Indeed, LGG-MTK56N significantly increased type A human colonic mucin adhesion compared to LGG-WT in experiments using the Biacore system. The ability to adhere to the colon is an important property of probiotics; thus, these results suggest that RE is an effective breeding strategy for probiotic lactic acid bacteria. IMPORTANCE We sought to apply ribosome engineering (RE) to probiotic lactic acid bacteria and to verify RE’s impact. Here, we showed that one mutant of RE Lacticaseibacillus rhamnosus GG (LGG-MTK56N) bore a GAPDH on the cell surface; the GAPDH was exported via an ABC transporter. Compared to the wild-type parent, LGG-MTK56N adhered more strongly to human colonic mucin and exhibited a distinct cell size and shape. These findings demonstrate that RE in LGG-MTK56N yielded dramatic changes in protein synthesis, protein transport, and cell morphology and affected adherence to human colonic mucin.


Antioxidants ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 640
Author(s):  
Adriana Ortega-Hernández ◽  
Ernesto Martínez-Martínez ◽  
Ruben Gómez-Gordo ◽  
Natalia López-Andrés ◽  
Amaya Fernández-Celis ◽  
...  

Background: The objective of this study is to determine the role of mitochondrial oxidative stress in the dysbiosis associated with a high fat diet in rats. In addition, the impact of gut microbiota (GM) in the cardiometabolic consequences of diet-induced obesity in rats has been evaluated. Methods: Male Wistar rats were fed either a high fat diet (HFD) or a control (CT) one for 6 weeks. At the third week, one-half of the animals of each group were treated with the mitochondrial antioxidant MitoTempo (MT; 0.7 mgKg−1day−1 i.p). Results: Animals fed an HFD showed a lower microbiota evenness and diversity in comparison to CT rats. This dysbiosis is characterized by a decrease in Firmicutes/Bacteroidetes ratio and relevant changes at family and genera compared with the CT group. This was accompanied by a reduction in colonic mucin-secreting goblet cells. These changes were reversed by MT treatment. The abundance of certain genera could also be relevant in the metabolic consequences of obesity, as well as in the occurrence of cardiac fibrosis associated with obesity. Conclusions: These results support an interaction between GM and mitochondrial oxidative stress and its relation with development of cardiac fibrosis, suggesting new approaches in the management of obesity-related cardiometabolic consequences.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Helen Earley ◽  
Grainne Lennon ◽  
Áine Balfe ◽  
J. Calvin Coffey ◽  
Desmond C. Winter ◽  
...  

Abstract Akkermansia muciniphila utilises colonic mucin as its substrate. Abundance is reduced in ulcerative colitis (UC), as is the relative proportion of sulphated mucin in the mucus gel layer (MGL). It is unknown if these phenomena are related, however reduced sulphated mucins could contribute to reduced abundance, owing to a lack of substrate. The aim of this study was to quantify A. muciniphila within the MGL and to relate these findings with markers of inflammation and the relative proportion of sulphomucin present. Colonic biopsies and mucus brushings were obtained from 20 patients with active UC (AC), 14 with quiescent UC (QUC) and 20 healthy controls (HC). A. muciniphila abundance was determined by RT-PCR. High iron diamine alcian-blue staining was performed for histological analysis. Patients with AC had reduced abundance of A. muciniphila compared to HC and QUC. A positive association was found between A. muciniphila abundance and higher percentage of sulphated mucin (ρ 0.546, p = 0.000). Lower abundances of A. muciniphila correlated with higher inflammatory scores (ρ = 0.294 (p = 0.001)). This study confirms an inverse relationship between A. muciniphila and inflammation and a positive association between A. muciniphila abundance and percentage of sulfated mucin in the MGL.


Author(s):  
Siddhartha S Ghosh ◽  
Jing Wang ◽  
Paul J Yannie ◽  
Yashnoor K Sandhu ◽  
William J Korzun ◽  
...  

ABSTRACT Background A Western-type diet (WD), rich in fat and cholesterol but deficient in fiber, induces development of diabetes and atherosclerosis. Colonic bacteria use the gut's mucous lining as an alternate energy source during periods of fiber deficiency, resulting in intestinal barrier erosion. Objective We hypothesized that supplementing a WD with galactooligosaccharide (GOS) fiber would attenuate WD-induced mucin layer disruption and attenuate development of metabolic diseases. Methods C57BL/6 mice (both sexes, 8–10 wk of age) were fed a standard rodent diet (TD7012, reference) or a high-fat, high-cholesterol–containing WD (TD88137, 21% fat, 0.15% cholesterol, 19.5% caesin) or a WD supplemented with 5% GOS fiber (TD170432, WD + GOS) for 16 wk. WD-fed mice that were gavaged daily with curcumin (100 mg/kg) served as positive controls. Glucose tolerance, colonic mucin layer, gene expression, and circulating macrophage/neutrophil levels were determined. Hyperlipidemic Ldlr–/– mice (both sexes, 8–10 wk of age) fed a WD with or without GOS supplementation (for 16 wk) were used to assess plasma LPS and atherosclerosis. Effects of dietary supplementation on different parameters were compared for each genotype. Results Compared with a WD, glucose tolerance was significantly improved in male C57BL/6 mice fed a WD + GOS (mean ± SEM: AUC = 53.6 ± 43.9 compared with 45.4 ± 33.3 g ⋅ min/dL; P = 0.015). Continuity of colonic mucin layer (MUC-2 expression) was improved in mice receiving GOS supplementation, indicating improved intestinal barrier. GOS supplementation also reduced circulating macrophages (30% decrease) and neutrophils (60% decrease), suggesting diminished systemic inflammation. In Ldlr–/– mice, GOS supplementation significantly reduced plasma LPS concentrations (mean ± SEM: 0.81 ±  0.43 EU/mL compared with 0.32 ± 0.26 EU/mL, P   < 0.0001, in females and 0.56 ± 0.24 EU/mL compared with 0.34 ± 0.12 EU/mL, P = 0.036, in males), improved glucose tolerance in male mice, and attenuated atherosclerotic lesion area (mean ± SEM: 54.2% ± 6.19% compared with 43.0% ± 35.12%, P   = 0.0006, in females and 54.6% ± 3.99% compared with 43.1% ± 8.11%, P = 0.003, in males). Conclusions GOS fiber supplementation improves intestinal barrier in C57BL/6 and Ldlr–/– mice and significantly attenuates WD-induced metabolic diseases and, therefore, may represent a novel strategy for management of these diseases.


Sign in / Sign up

Export Citation Format

Share Document