scholarly journals Air Primary Pollutant During 2015-2019 Over 19 Chinese Urban Agglomerations: Spatiotemporal Distribution And Emission Source Impacts

Author(s):  
Tianhui Tao ◽  
Yishao Shi ◽  
Katabarwa Murenzi Gilbert ◽  
Xinyi Liu

Abstract The "comparative attitude" of urban agglomerations (UAs) involves multidimensional perspectives such as infrastructure, ecological protection, and air pollution. Based on monitoring station data, comparative studies of multispatial, multitime scale and multiemission pollution sources of air quality on 19 urban agglomerations (UAs) during the 13th Five-Year Plan period in China were explored by mathematical statistics. The comparison results are all visualized and show that clean air days gradually increased and occurred mainly in summer, especially in South and Southwest China. PM2.5, PM10 and O3 were still the main primary pollutants. PM2.5 is mainly concentrated in December, January and February, and PM10 is mainly concentrated in October-November and March-April. The O3 pollution in the Pearl River Delta and Beibu Gulf UA located in the south is mainly concentrated from August to November, which is different from others from May to September. Second, the hourly O3 concentration rates were significantly higher than the particulate matter (PM) pollution rates from 2015 to 2019. Diurnal trends in O3 concentration in all directions also showed a single peak, with the largest increments that appeared between 13:00 and 16:00, while the spatial distribution of this peak was significantly regional, earlier in the east but later in the west. Third, this analysis indicated that the annual average air quality index (AQI) showed a gradually decreasing trend outward, taking the Central Plains UA as the center. Furthermore, the total amount of PM2.5 pollution caused by anthropogenic sources is approximately 2.5 times that of PM10, and industries are the main sources of PM2.5, PM10 and VOCs (volatile organic compounds). VOCs and NOX increased in half of the urban agglomerations, which are the reasons for the increase in ozone pollution. The outcomes of this study will provide targeted insights on pollution prevention in urban agglomerations in the future.

2016 ◽  
Author(s):  
Guohui Li ◽  
Naifang Bei ◽  
Junji Cao ◽  
Jiarui Wu ◽  
Xin Long ◽  
...  

Abstract. Rapid growth of industrialization, transportation, and urbanization has caused increasing emissions of ozone (O3) precursors recently, enhancing the O3 formation in Eastern China. We show here that Eastern China has experienced widespread and persistent O3 pollution from April to September in 2015 based on the O3 observations in 223 cities. The observed maximum 1-h O3 concentrations exceed 200 μg m−3 in almost all the cities, 400 μg m−3 in more than 25 % of the cities, and even 800 μg m−3 in six cities in Eastern China. The average daily maximum 1-h O3 concentrations are more than 160 μg m−3 in 45 % of the cities, and the 1-h O3 concentrations of 200 μg m−3 have been exceeded on over 10 % of days from April to September in 129 cities. A widespread and severe O3 pollution episode from 22 to 28 May 2015 in Eastern China has been simulated using the WRF-CHEM model to evaluate the O3 contribution of biogenic and various anthropogenic sources. The model generally performs reasonably well in simulating the temporal variations and spatial distributions of near-surface O3 concentrations. Using the factor separate approach, sensitivity studies have indicated that the industry source plays the most important role in the O3 formation, and constitutes the culprit of the severe O3 pollution in Eastern China. The transportation source contributes considerably to the O3 formation, and the O3 contribution of the residential source is not significant generally. The biogenic source provides a background O3 source, and also plays an important role in the south of Eastern China. Further model studies are needed to comprehensively investigate O3 formation for supporting the design and implementation of O3 control strategies, considering rapid changes of emissions inventories and photolysis caused by the "Atmospheric Pollution Prevention and Control Action Plan", released by the Chinese State Council in 2013.


2021 ◽  
Vol 9 ◽  
Author(s):  
Zhe Cui ◽  
Feng Yang ◽  
Fang-rong Ren ◽  
Qizheng Wei ◽  
Zhengfeng Xi

Urban agglomeration has become a unique form of cities during the rapid development of emerging economies. With the increasing attention on global energy and environmental efficiency, air quality evaluation and pollution control have become important standards to measure the health and orderly development of such agglomerations. Based on panel data of 60 cities in the three major urban agglomerations of Beijing-Tianjin-Hebei (BTH), Yangtze River Delta (YRD), and Pearl River Delta (PRD), this study uses the Modified MetaFrontier Dynamic SBM model to evaluate their air quality over the 5-year period of 2013–2017. The results present that the development level of air pollution prevention and control in China’s three major urban agglomerations is relatively low, and YRD as the most developed area has the worst effect of air pollution prevention and control. The MetaFrontier and Group Frontier Efficiency analysis confirms the conclusion of the cluster analysis that a significant two-level differentiation exists in China’s three urban agglomerations. Moreover, China’s three major urban agglomerations are still in the stage of high energy consumption and high development. Lastly, we point out different recommendations for industrial structure and governance foci of the three major urban agglomerations. Dust prevention technology should be improved to reduce PM2.5 in BTH, desulfurization technology should be enhanced to cut industrial SO2 emissions in YRD, and better emission reduction targets and other targeted measures should be formulated in PRD.


2017 ◽  
Vol 17 (4) ◽  
pp. 2759-2774 ◽  
Author(s):  
Guohui Li ◽  
Naifang Bei ◽  
Junji Cao ◽  
Jiarui Wu ◽  
Xin Long ◽  
...  

Abstract. Rapid growth of industrialization, transportation, and urbanization has caused increasing emissions of ozone (O3) precursors recently, enhancing the O3 formation in eastern China. We show here that eastern China has experienced widespread and persistent O3 pollution from April to September 2015 based on the O3 observations in 223 cities. The observed maximum 1 h O3 concentrations exceed 200 µg m−3 in almost all the cities, 400 µg m−3 in more than 25 % of the cities, and even 800 µg m−3 in six cities in eastern China. The average daily maximum 1 h O3 concentrations are more than 160 µg m−3 in 45 % of the cities, and the 1 h O3 concentrations of 200 µg m−3 have been exceeded on over 10 % of days from April to September in 129 cities. Analyses of pollutant observations from 2013 to 2015 have shown that the concentrations of CO, SO2, NO2, and PM2.5 from April to September in eastern China have considerably decreased, but the O3 concentrations have increased by 9.9 %. A widespread and severe O3 pollution episode from 22 to 28 May 2015 in eastern China has been simulated using the Weather Research and Forecasting model coupled to chemistry (WRF-CHEM) to evaluate the O3 contribution of biogenic and various anthropogenic sources. The model generally performs reasonably well in simulating the temporal variations and spatial distributions of near-surface O3 concentrations. Using the factor separation approach, sensitivity studies have indicated that the industry source plays the most important role in the O3 formation and constitutes the culprit of the severe O3 pollution in eastern China. The transportation source contributes considerably to the O3 formation, and the O3 contribution of the residential source is not significant generally. The biogenic source provides a background O3 source, and also plays an important role in the south of eastern China. Further model studies are needed to comprehensively investigate O3 formation for supporting the design and implementation of O3 control strategies, considering rapid changes of emission inventories and photolysis caused by the Atmospheric Pollution Prevention and Control Action Plan released by the Chinese State Council in 2013.


2018 ◽  
Vol 28 (4) ◽  
pp. 1329-1333
Author(s):  
Miodrag Šmelcerović

The protection of the environment and people’s health from negative influences of the pollution of air as a medium of the environment requires constant observing of the air quality in accordance with international standards, the analysis of emission and imission of polluting matters in the air, and their connection with the sources of pollution. Having in mind the series of laws and delegated legislations which define the field of air pollution, it is necessary to closely observe these long-term processes, discovering cause-and-effect relationships between the activities of anthropogenic sources of emission of polluting matters and the level of air degradation. The relevant evaluation of the air quality of a certain area can be conducted if the level of concentration of polluting matters characteristic for the pollution sources of this area is observed in a longer period of time. The data obtained by the observation of the air pollution are the basis for creation of the recovery program of a certain area. Vranje is a town in South Serbia where there is a bigger number of anthropogenic pollution sources that can significantly diminish the air quality. The cause-and-effect relationship of the anthropogenic sources of pollution is conducted related to the analysis of systematized data which are in the relevant data base of the authorized institution The Institute of Public Health Vranje, for the time period between the year of 2012. and 2017. By the analysis of data of imission concentrations of typical polluting matters, the dominant polluting matters were determined on the territory of the town of Vranje, the ones that are the causers of the biggest air pollution and the risk for people’s health. Analysis of the concentration of soot, sulfur dioxide and nitrogen oxides indicates their presence in the air of Vranje town area in concentrations that do not exceed the permitted limit values annually. The greatest pollution is caused by the soot content in the air, especially in the winter period when the highest number of days with the values above the limit was registered. By perceiving the influence of natural and anthropogenic factors, it is clear that the concentration of polluting matters can be decreased only by establishing control over anthropogenic sources of pollution, and thus it can be contributed to the improvement of the air quality of this urban environment.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 189
Author(s):  
Min He ◽  
Junhui Chen ◽  
Yuming He ◽  
Yuan Li ◽  
Qichao Long ◽  
...  

As one of the most populated regions in China, Sichuan province had been suffering from deteriorated air quality due to the dramatic growth of economy and vehicles in recent years. To deal with the increasingly serious air quality problem, Sichuan government agencies had made great efforts to formulate various control measures and policies during the past decade. In order to better understand the emission control progress in recent years and to guide further control policy formulation, the emission trends and source contribution characteristics of SO2, NOX, PM10 and PM2.5 from 2013 to 2017 were characterized by using emission factor approach in this study. The results indicated that SO2 emission decreased rapidly during 2013–2017 with total emission decreased by 52%. NOX emission decreased during 2013–2015 but started to increase slightly afterward. PM10 and PM2.5 emissions went down consistently during the study period, decreased by 26% and 25%, respectively. In summary, the contribution of power plants kept decreasing, while contribution of industrial combustion remained steady in the past 5 years. The contribution of industrial processes increased for SO2 emission, and decreased slightly for NOX, PM10 and PM2.5 emissions. The on-road mobile sources were the largest emission contributor for NOX, accounting for about 32–40%, and its contribution increased during 2013–2015 and then decreased. It was worth mentioning that nonroad mobile sources and natural gas fired boilers were becoming important NOX contributors in Sichuan. Fugitive dust were the key emission sources for PM10 and PM2.5, and the contribution kept increasing in the study period. Comparison results with other inventories, satellite data and ground observations indicated that emission trends developed in this research were relatively credible.


2021 ◽  
Vol 13 (10) ◽  
pp. 5685
Author(s):  
Panbo Guan ◽  
Hanyu Zhang ◽  
Zhida Zhang ◽  
Haoyuan Chen ◽  
Weichao Bai ◽  
...  

Under the Air Pollution Prevention and Control Action Plan (APPCAP) implemented, China has witnessed an air quality change during the past five years, yet the main influence factors remain relatively unexplored. Taking the Beijing-Tianjin-Hebei (BTH) and Yangtze River Delta (YRD) regions as typical cluster cities, the Weather Research Forecasting (WRF) and Comprehensive Air Quality Model with Extension (CAMx) were introduced to demonstrate the meteorological and emission contribution and PM2.5 flux distribution. The results showed that the PM2.5 concentration in BTH and YRD significantly declined with a descend ratio of −39.6% and −28.1%, respectively. For the meteorological contribution, those regions had a similar tendency with unfavorable conditions in 2013–2015 (contribution concentration 1.6–3.8 μg/m3 and 1.1–3.6 μg/m3) and favorable in 2016 (contribution concentration −1.5 μg/m3 and −0.2 μg/m3). Further, the absolute value of the net flux’s intensity was positively correlated with the degree of the favorable/unfavorable weather conditions. When it came to emission intensity, the total net inflow flux increased, and the outflow flux decreased significantly across the border with the emission increasing. In short: the aforementioned results confirmed the effectiveness of the regional joint emission control and provided scientific support for the proposed effective joint control measures.


Author(s):  
Diogo Lopes ◽  
Joana Ferreira ◽  
Ka In Hoi ◽  
Ka-Veng Yuen ◽  
Kai Meng Mok ◽  
...  

The Pearl River Delta (PRD) region is located on the southeast coast of mainland China and it is an important economic hub. The high levels of particulate matter (PM) in the atmosphere, however, and poor visibility have become a complex environmental problem for the region. Air quality modeling systems are useful to understand the temporal and spatial distribution of air pollution, making use of atmospheric emission data as inputs. Over the years, several atmospheric emission inventories have been developed for the Asia region. The main purpose of this work is to evaluate the performance of the air quality modeling system for simulating PM concentrations over the PRD using three atmospheric emission inventories (i.e., EDGAR, REAS and MIX) during a winter and a summer period. In general, there is a tendency to underestimate PM levels, but results based on the EDGAR emission inventory show slightly better accuracy. However, improvements in the spatial and temporal disaggregation of emissions are still needed to properly represent PRD air quality. This study’s comparison of the three emission inventories’ data, as well as their PM simulating outcomes, generates recommendations for future improvements to atmospheric emission inventories and our understanding of air pollution problems in the PRD region.


Author(s):  
Rong Guo ◽  
Tong Wu ◽  
Mengran Liu ◽  
Mengshi Huang ◽  
Luigi Stendardo ◽  
...  

Urban agglomerations have become a new geographical unit in China, breaking the administrative fortresses between cities, which means that the population and economic activities between cities will become more intensive in the future. Constructing and optimizing the ecological security pattern of urban agglomerations is important for promoting harmonious social-economic development and ecological protection. Using the Harbin-Changchun urban agglomeration as a case study, we have identified ecological sources based on the evaluation of ecosystem functions. Based on the resistance surface modified by nighttime light (NTL) data, the potential ecological corridors were identified using the least-cost path method, and key ecological corridors were extracted using the gravity model. By combining 15 ecological sources, 119 corridors, 3 buffer zones, and 77 ecological nodes, the ecological security pattern (ESP) was constructed. The main land-use types composed of ecological sources and corridors are forest land, cultivated land, grassland, and water areas. Some ecological sources are occupied by construction, while unused land has the potential for ecological development. The ecological corridors in the central region are distributed circularly and extend to southeast side in the form of tree branches with the Songhua River as the central axis. Finally, this study proposes an optimizing pattern with "four belts, four zones, one axis, nine corridors, ten clusters and multi-centers" to provide decision makers with spatial strategies with respect to the conflicts between urban development and ecological protection during rapid urbanization.


2017 ◽  
Vol 200 ◽  
pp. 693-703 ◽  
Author(s):  
Jos Lelieveld

In atmospheric chemistry, interactions between air pollution, the biosphere and human health, often through reaction mixtures from both natural and anthropogenic sources, are of growing interest. Massive pollution emissions in the Anthropocene have transformed atmospheric composition to the extent that biogeochemical cycles, air quality and climate have changed globally and partly profoundly. It is estimated that mortality attributable to outdoor air pollution amounts to 4.33 million individuals per year, associated with 123 million years of life lost. Worldwide, air pollution is the major environmental risk factor to human health, and strict air quality standards have the potential to strongly reduce morbidity and mortality. Preserving clean air should be considered a human right, and is fundamental to many sustainable development goals of the United Nations, such as good health, climate action, sustainable cities, clean energy, and protecting life on land and in the water. It would be appropriate to adopt “clean air” as a sustainable development goal.


2018 ◽  
Vol 180 ◽  
pp. 69-78 ◽  
Author(s):  
Cheuk Hei Marcus Tong ◽  
Steve Hung Lam Yim ◽  
Daniel Rothenberg ◽  
Chien Wang ◽  
Chuan-Yao Lin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document