scholarly journals Exploring Influencing Factors of Chronic Obstructive Pulmonary Disease Based on Elastic Net and Bayesian Network

Author(s):  
Dichen Quan ◽  
Jiahui Ren ◽  
Hao Ren ◽  
Liqin Linghu ◽  
Xuchun Wang ◽  
...  

Abstract This study aimed to construct Bayesian networks(BNs) to analyze the network relationship between those influencing factors and COPD, and to explore their intensity of effect on COPD through network reasoning. Elastic Net and Max-Min Hill-Climbing(MMHC) hybrid algorithm were adopted to screen the variables on the monitoring data of COPD among residents in Shanxi Province, China from 2014 to 2015, and construct BNs respectively. After variables selection by Elastic Net, 10 variables closely related to COPD were selected finally. The BNs constructed by MMHC showed that smoking status, household air pollution, family history, cough, air hunger or dyspnea were directly related to COPD, and Gender was indirectly linked to COPD through smoking status. Moreover, smoking status, household air pollution and family history were the parent nodes of COPD, and cough, air hunger or dyspnea represented the child nodes of COPD. In other words, smoking status, household air pollution and family history were related to the occurrence of COPD, and COPD would make patients’ cough, air hunger or dyspnea worse. Generally speaking, BNs could reveal the complex network relationship between COPD and its relevant factors well, making it more convenient to carry out targeted prevention and control of COPD.

2021 ◽  
Author(s):  
Dichen Quan ◽  
Jiahui Ren ◽  
Hao Ren ◽  
Liqin Linghu ◽  
Xuchun Wang ◽  
...  

Abstract Objective This study aimed to construct Bayesian networks to analyze the network relationship between COPD and its related factors, and to explore the influencing intensity on COPD through network reasoning. Method Firstly Elastic Net and MMHC hybrid algorithm were adopted to screen the variables of the data of COPD in Shanxi Province from 2014 to 2015 and construct Bayesian networks respectively, and the parameters were estimated by maximum likelihood estimation. Results After feature selection by Elastic Net, 10 variables closely related to COPD finally entered the model. The COPD Bayesian networks constructed by MMHC algorithm showed that smoking status, household air pollution, family history, cough, air hunger or dyspnea were directly related to COPD, in which smoking status, household air pollution and family history were the parent nodes of COPD, and cough, air hunger or dyspnea represented the child nodes of COPD. In other words, smoking status, household air pollution, family history were related to the occurrence of COPD, and COPD would affect cough, air hunger or dyspnea. Gender was indirectly linked to COPD through smoking status. Conclusion Using Elastic Net to knock out some weakly-associated influencing factors of COPD in the variable screening stage, Bayesian networks could reveal the complex network relationship between COPD and its relevant factors well, making it more convenient to carry out targeted prevention and control of COPD. As such, Bayesian networks enjoyed a good prospect of application in analyzing disease-related factors.


Atmosphere ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 422
Author(s):  
H. Dean Hosgood ◽  
Madelyn Klugman ◽  
Keitaro Matsuo ◽  
Alexandra J. White ◽  
Atsuko Sadakane ◽  
...  

Household air pollution (HAP) is of public health concern, with ~3 billion people worldwide (including >15 million in the US) exposed. HAP from coal use is a human lung carcinogen, yet the epidemiological evidence on carcinogenicity of HAP from biomass use, primarily wood, is not conclusive. To robustly assess biomass’s carcinogenic potential, prospective studies of individuals experiencing a variety of HAP exposures are needed. We have built a global consortium of 13 prospective cohorts (HAPCO: Household Air Pollution Consortium) that have site- and disease-specific mortality and solid fuel use data, for a combined sample size of 587,257 participants and 57,483 deaths. HAPCO provides a novel opportunity to assess the association of HAP with lung cancer death while controlling for important confounders such as tobacco and outdoor air pollution exposures. HAPCO is also uniquely positioned to determine the risks associated with cancers other than lung as well as nonmalignant respiratory and cardiometabolic outcomes, for which prospective epidemiologic research is limited. HAPCO will facilitate research to address public health concerns associated with HAP-attributed exposures by enabling investigators to evaluate sex-specific and smoking status-specific effects under various exposure scenarios.


Author(s):  
Caroline A. Ochieng ◽  
Cathryn Tonne ◽  
Sotiris Vardoulakis ◽  
Jan Semenza

Household air pollution from use of solid fuels (biomass fuels and coal) is a major problem in low and middle income countries, where 90% of the population relies on these fuels as the primary source of domestic energy. Use of solid fuels has multiple impacts, on individuals and households, and on the local and global environment. For individuals, the impact on health can be considerable, as household air pollution from solid fuel use has been associated with acute lower respiratory infections, chronic obstructive pulmonary disease, lung cancer, and other illnesses. Household-level impacts include the work, time, and high opportunity costs involved in biomass fuel collection and processing. Harvesting and burning biomass fuels affects local environments by contributing to deforestation and outdoor air pollution. At a global level, inefficient burning of solid fuels contributes to climate change. Improved biomass cookstoves have for a long time been considered the most feasible immediate intervention in resource-poor settings. Their ability to reduce exposure to household air pollution to levels that meet health standards is however questionable. In addition, adoption of improved cookstoves has been low, and there is limited evidence on how the barriers to adoption and use can be overcome. However, the issue of household air pollution in low and middle income countries has gained considerable attention in recent years, with a range of international initiatives in place to address it. These initiatives could enable a transition from biomass to cleaner fuels, but such a transition also requires an enabling policy environment, especially at the national level, and new modes of financing technology delivery. More research is also needed to guide policy and interventions, especially on exposure-response relationships with various health outcomes and on how to overcome poverty and other barriers to wide-scale transition from biomass fuels to cleaner forms of energy.


2019 ◽  
Vol 54 (1) ◽  
pp. 1802140 ◽  
Author(s):  
Dany Doiron ◽  
Kees de Hoogh ◽  
Nicole Probst-Hensch ◽  
Isabel Fortier ◽  
Yutong Cai ◽  
...  

Ambient air pollution increases the risk of respiratory mortality, but evidence for impacts on lung function and chronic obstructive pulmonary disease (COPD) is less well established. The aim was to evaluate whether ambient air pollution is associated with lung function and COPD, and explore potential vulnerability factors.We used UK Biobank data on 303 887 individuals aged 40–69 years, with complete covariate data and valid lung function measures. Cross-sectional analyses examined associations of land use regression-based estimates of particulate matter (particles with a 50% cut-off aerodynamic diameter of 2.5 and 10 µm: PM2.5 and PM10, respectively; and coarse particles with diameter between 2.5 μm and 10 μm: PMcoarse) and nitrogen dioxide (NO2) concentrations with forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC), the FEV1/FVC ratio and COPD (FEV1/FVC <lower limit of normal). Effect modification was investigated for sex, age, obesity, smoking status, household income, asthma status and occupations previously linked to COPD.Higher exposures to each pollutant were significantly associated with lower lung function. A 5 µg·m−3 increase in PM2.5 concentration was associated with lower FEV1 (−83.13 mL, 95% CI −92.50– −73.75 mL) and FVC (−62.62 mL, 95% CI −73.91– −51.32 mL). COPD prevalence was associated with higher concentrations of PM2.5 (OR 1.52, 95% CI 1.42–1.62, per 5 µg·m−3), PM10 (OR 1.08, 95% CI 1.00–1.16, per 5 µg·m−3) and NO2 (OR 1.12, 95% CI 1.10–1.14, per 10 µg·m−3), but not with PMcoarse. Stronger lung function associations were seen for males, individuals from lower income households, and “at-risk” occupations, and higher COPD associations were seen for obese, lower income, and non-asthmatic participants.Ambient air pollution was associated with lower lung function and increased COPD prevalence in this large study.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Marie Kruse ◽  
Bjørn Sætterstrøm ◽  
Jakob Bønløkke ◽  
Henrik Brønnum-Hansen ◽  
Esben Meulengracht Flachs ◽  
...  

The objective of this study was to analyse the productivity cost savings associated with mitigation of particulate emissions, as an input to a cost-benefit analysis. Reduced emissions of particulate matter (PM2.5) may reduce the incidence of diseases related to air pollution and potentially increase productivity as a result of better health. Based on data from epidemiological studies, we modelled the impact of air pollution on four different diseases: coronary heart disease, stroke, lung cancer, and chronic obstructive pulmonary disease. We identified individuals with these diseases and modelled changes in disease incidence as an expression of exposure. The labour market affiliation and development in wages over time for exposed individuals was compared to that of a reference group of individuals matched on a number of sociodemographic variables, comorbidity, and predicted smoking status. We identified a productivity cost of about 1.8 million EURO per 100,000 population aged 50–70 in the first year, following an increase inPM2.5emissions. We have illustrated how the potential impact of air pollution may influence social production by application of a matched study design that renders a study population similar to that of a trial. The result suggests that there may be a productivity gain associated with mitigation efforts.


2018 ◽  
Vol 51 (1) ◽  
pp. 1700698 ◽  
Author(s):  
Akshay Sood ◽  
Nour A. Assad ◽  
Peter J. Barnes ◽  
Andrew Churg ◽  
Stephen B. Gordon ◽  
...  

Exposure to household air pollution (HAP) from solid fuel combustion affects almost half of the world population. Adverse respiratory outcomes such as respiratory infections, impaired lung growth and chronic obstructive pulmonary disease have been linked to HAP exposure. Solid fuel smoke is a heterogeneous mixture of various gases and particulates. Cell culture and animal studies with controlled exposure conditions and genetic homogeneity provide important insights into HAP mechanisms. Impaired bacterial phagocytosis in exposed human alveolar macrophages possibly mediates several HAP-related health effects. Lung pathological findings in HAP-exposed individuals demonstrate greater small airways fibrosis and less emphysema compared with cigarette smokers. Field studies using questionnaires, air pollution monitoring and/or biomarkers are needed to better establish human risks. Some, but not all, studies suggest that improving cookstove efficiency or venting emissions may be associated with reduced respiratory symptoms, lung function decline in women and severe pneumonia in children. Current studies focus on fuel switching, stove technology replacements or upgrades and air filter devices. Several governments have initiated major programmes to accelerate the upgrade from solid fuels to clean fuels, particularly liquid petroleum gas, which provides research opportunities for the respiratory health community.


2020 ◽  
Vol 7 ◽  
Author(s):  
Yanfei Guo ◽  
Zhenzhen Xing ◽  
Guangliang Shan ◽  
Jean-Paul Janssens ◽  
Tieying Sun ◽  
...  

Aim of Study: Four hundred million people live at high altitude worldwide. Prevalence and risk factors for COPD in these populations are poorly documented. We examined the prevalence and risk factors for COPD in residents living at an altitude of 2,100–4,700 m.Methods: We performed a cross-sectional survey in Xinjiang and Tibet autonomous region. A multistage stratified sampling procedure was used to select a representative population aged 15 years or older from eight high altitude regions. All participants underwent pre- and post-bronchodilator measurement of forced expiratory volumes. COPD was diagnosed according to 2019 Global Initiative for Chronic Obstructive Lung Disease (GOLD) criteria.Results: Between June, 2015 and August 2016, 4,967 subjects were included. Median age was 38.0 years (range: 15–91 years; inter-quartile range: 28–49 years); 51.4% participants were female. Overall prevalence of spirometry-defined COPD was 8.2% (95% CI 7.4–8.9%): 9.3% in male (95% CI 8.2–10.4%), and 7.1% in female (95% CI 6.1–8.2%). By multivariable logistic regression analysis, COPD was significantly associated with being aged ≥40 years (odds ratio: 2.25 [95% CI 1.72–2.95], P &lt; 0.0001), exposure to household air pollution (OR: 1.34 [95% CI 1.01–1.79], P = 0.043), and a history of tuberculosis (OR: 1.79 [95% CI 1.23–2.61], P = 0.030), while living at a higher altitude (OR: 0.45 [95% CI 0.33–0.61], P &lt; 0.0001) and having a higher educational level (OR: 0.64 [95% CI 0.43–0.95], P = 0.025) were associated with a lower prevalence of COPD.Conclusions: Our results show that the spirometry-defined COPD is a considerable health problem for residents living at high altitudes and COPD prevalence was inversely correlated with altitude. Preventing exposure to household air pollution and reducing the incidence of tuberculosis should be public health priorities for high altitude residents.


Sign in / Sign up

Export Citation Format

Share Document