scholarly journals The Effects of Acid Etching on the Morphology and Properties of Medical Grade Alumina and Zirconia Surfaces for Prosthetics

Author(s):  
Damian S Nakonieczny ◽  
Zbigniew Kazimierz Paszenda ◽  
Marianna Hundáková Hundáková ◽  
Gabriela Kratošová ◽  
Sylva Holešová ◽  
...  

Abstract In this study we modify and functionalize the surface of alumina and zirconia ceramics for medical applications using chemical etching with mixtures of sulfuric, nitric, hydrofluoric acids and peroxide. After etching, the impact of processes on surface development, chemical composition, and topography is studied to select the most effective process of surface development. Medical grade alumina and zirconia ceramic powders have been chemically etched with selected three kinds of acidic solutions : 1.sulfuric and nitric acid, 2.sulfuric acid and peroxide, 3.fluoric acid various diluted aqueous solution during the selected time periods. Following heat treatment was performed and the samples characterization were undertaken: morphology and chemical composition , phase composition, functional group determination, and the specific surface area and porosity evaluation.. Comparing the results raised from acidic etching, it was noticed that the use of H2SO4:HNO3 solutions causes sulphur residues in ceramic in the form of sulphates. The application of HF negatively affects the structure of the material and cause agglomeration. The most advantageous modification of ceramic powders was application of piranha solution, the obtaining surface development was achieved, satisfactory degree of agglomeration and post-process pollution.

Crystals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1232
Author(s):  
Damian Stanislaw Nakonieczny ◽  
Aleš Slíva ◽  
Zbigniew Paszenda ◽  
Marianna Hundáková ◽  
Gabriela Kratošová ◽  
...  

In order for bioceramics to be further used in composites and their applications, it is important to change the surface so that the inert material is ready to interact with another material. Medical grade alumina and zirconia ceramic powders have been chemically etched with three selected acidic mixtures. Powder samples were taken for characterization, which was the key to evaluating a successful surface change. Changes in morphology, together with chemical composition, were studied using scanning electron microscopy, phase composition using X-ray diffraction methods, and nitrogen adsorption/desorption isotherms are used to evaluate specific surface area and porosity. The application of HF negatively affected the morphology of the material and caused agglomeration. The most effective modification of ceramic powders was the application of a piranha solution to obtain a new surface and a satisfactory degree of agglomeration. The prepared micro-roughness of the etched ceramic would provide an improved surface of the material either for its next step of incorporation into the selected matrix or to directly aid in the attachment and proliferation of osteoblast cells.


Author(s):  
Edward Bormashenko ◽  
Irina Legchenkova ◽  
Shiri Navon-Venezia ◽  
Mark Frenkel ◽  
Yelena Bormashenko

Impact of the Corona, dielectric barrier discharge and low pressure radiofrequency air plasmas on the chemical composition and wettability of the medical grade polyvinylchloride was investigated. Corona plasma treatment exerted the most pronounced increase in the hydrophilization of polyvinylchloride. The specific energy of adhesion of the pristine and plasma treated PVC tubing is reported. The kinetics of hydrophobic recovery following the plasma treatment was explored. The time evolution of the apparent contact angle under the hydrophobic recovery is satisfactorily described by the exponential fitting. Energy-dispersive X-ray spectroscopy of the chemical composition of the near-surface layers of the plasma treated catheters revealed their oxidation. The effect of the hydrophobic recovery is hardly correlated with oxidation of the polymer surface, which is irreversible.


2020 ◽  
Vol 11 (1) ◽  
pp. 300
Author(s):  
Edward Bormashenko ◽  
Irina Legchenkova ◽  
Shiri Navon-Venezia ◽  
Mark Frenkel ◽  
Yelena Bormashenko

The impact of the Corona, dielectric barrier discharge, and low pressure radiofrequency air plasmas on the chemical composition and wettability of medical grade polyvinylchloride was investigated. Corona plasma treatment exerted the most pronounced increase in the hydrophilization of polyvinylchloride. The specific energy of adhesion of the pristine and plasma-treated Polyvinylchloride (PVC) tubing is reported. Plasma treatment increased markedly the specific free surface energy of PVC. The kinetics of hydrophobic recovery following plasma treatment was explored. The time evolution of the apparent contact angle under the hydrophobic recovery is satisfactorily described by the exponential fitting. Energy-dispersive X-ray spectroscopy of the chemical composition of the near-surface layers of the plasma-treated catheters revealed their oxidation. The effect of the hydrophobic recovery hardly correlated with oxidation of the polymer surface, which is irreversible and it is reasonably attributed to the bulk mobility of polymer chains.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6201
Author(s):  
Damian S. Nakonieczny ◽  
Frank Kern ◽  
Lukas Dufner ◽  
Magdalena Antonowicz ◽  
Krzysztof Matus

This work aimed to prepare a composite with a polyamide (PA) matrix and surface-modified ZrO2 or Al2O3 to be used as ceramic fillers (CFs). Those composites contained 30 wt.% ceramic powder to 70 wt.% polymer. Possible applications for this type of composite include bioengineering applications especially in the fields of dental prosthetics and orthopaedics. The ceramic fillers were subjected to chemical surface modification with Piranha Solution and suspension in 10 M sodium hydroxide and Si3N4 to achieve the highest possible surface development and to introduce additional functional groups. This was to improve the bonding between the CFs and the polymer matrix. Both CFs were examined for particle size distribution (PSD), functional groups (FTIR), chemical composition (XPS), phase composition (XRD), and morphology and chemical composition (SEM/EDS). Filaments were created from the powders prepared in this way and were then used for 3D FDM printing. Samples were subjected to mechanical tests (tensility, hardness) and soaking tests in a high-pressure autoclave in artificial saliva for 14, 21, and 29 days.


2020 ◽  
Vol 54 (4) ◽  
pp. 339-352
Author(s):  
Korina Mešić ◽  
Igor Majnarić ◽  
Jasmina Obhođaš ◽  
Gorana Baršić ◽  
Ketij Mehulić

Objectives: To examine the effect of two aging protocols on the chemical and phase composition as well as the surface state of monolithic translucent zirconia ceramics. Material and Methods: Translucent zirconia ceramics KATANA-Zirconia STML with different surface treatments (no treatment, K1, K2; glazed, G1-G8; polished, P1-P8) underwent testing in order to examine how the two aging protocols (three-hour hydrothermal degradation in an autoclave at 134 °C and 2 bars: G1-G4, P1-P4, and sixteen-hour chemical degradation in four-percent acetic acid at 80 °C (ISO 6872): G5-G8, P5-P8) affect chemical composition, particularly the share of stabilizing yttrium oxide (Energy Dispersive XRay Fluorescence – EDXRF), phase composition (X-ray diffraction – XRD) and surface state in terms of roughness and gloss. Results: Aging protocols did not affect the tested chemical composition stability of specimens and a high share of stabilizing yttrium-oxide (≥10% of total content), which correlates with the absence of monoclinic phase. A decrease in gloss on all specimens is statistically significant. Chemical degradation substantially increased the surface roughness of tested specimens. Conclusions: Translucent monolithic zirconia demonstrated a stable chemical composition and resistance to tetragonal-to-monoclinic transformation. Surface gloss was significantly reduced, especially in polished specimens. Contrary to glazed specimens, the tested polished specimens manifested an increase in surface roughness. Glazing the surface of translucent monolithic zirconia produces better esthetic, tribological and hygienic effects than polishing.


2018 ◽  
Vol 69 (4) ◽  
pp. 961-964
Author(s):  
Andrei Vasile Olteanu ◽  
Georgiana Emmanuela Gilca Blanariu ◽  
Gheorghe Gh. Balan ◽  
Dana Elena Mitrica ◽  
Elena Gologan ◽  
...  

Non-alcoholic fatty liver disease (NAFLD) has become of major interest worldwide, it is estimated that more than 20% of the general population suffer from liver steatosis. NAFLD is highly associated with metabolic risk factors like type 2 diabetes mellitus, obesity and dyslipidemia, the patients diagnosed with NAFLD should adopt a high fiber low calorie diet, with reduced saturated fat and carbohydrates content, leading to weight loss and improvement of metabolic profile. Our study is aiming to shape the profile of the patient interested in being informed related to food quality and chemical composition and to evaluate the aspects on the food products label which are important for the customer. Between June 2017 and December 2017, 83 patients diagnosed with NASH were included in the study, representing the study group, while 33 subjects, without metabolic syndrome or digestive diseases, selected from patient list belonging to two general practitioners, constituted the control group. Related to the interest of being informed about the chemical composition and nutritional value of the products bought, the study showed a low interest for the provided information on nutritional value. lack of confidence in the provided information and complexity of the information are understandable, the high number of subject reasoning through lack of immediate clinical benefit is surprising. Among the healthy population the willingness to pay attention to this aspect is extremely low.


2019 ◽  
Vol 9 (4) ◽  
pp. 268-279
Author(s):  
Mohamed E.I. Badawy ◽  
Ibrahim E.A. Kherallah ◽  
Ahmed S.O. Mohareb ◽  
Mohamed. Z.M. Salem ◽  
Hameda A. Yousef

Background:Plant extracts are important products in the world and have been widely used for isolation of important biologically active products. Because of their significant environmental impact, extensive research has been explored to determine the antimicrobial activity of plant extracts.Methods:Acetone extracts of the bark and leaf of Cupressus sempervirens and Juniperus phoenicea, collected from three different altitudes (125, 391, and 851 m high of sea level) at Al- Jabel Al-Akhdar area, Libya were obtained and analyzed by GC/MS. The antimicrobial activity of the extracts was further evaluated against plant bacteria Rhizobium radiobacter, Erwinia carotovora, Rhodococcus fascians and Ralstonia solanacearum and fungus Botrytis cinerea.Results:The impact of the altitude from the sea level on the quantity and chemical constituents of the extracts was investigated. The yield was largely dependent on tree species and the highest yield (6.50%) was obtained with C. sempervirens L bark of altitude III (851 m of the sea level), while the lowest (1.17%) was obtained with the leaf extract of C. sempervirens L from altitude I (125 m). The chemical composition analyzed by GC/MS confirmed that the leaf extracts of C. sempervirens and J. phoenicea contained a complex mixture of monoterpene hydrocarbons, sesquiterpenes, diterpenes, diterpenoids, terpenophenolic, steroids and phthalates. However, the bark extracts of both trees contained a mixture of sesquiterpenes, diterpenes, diterpenoids, terpenophenolics, phthalates, retinol and steroids. These constituents revealed some variability among the extracts displaying the highest interesting chemotype of totarol (terpenophenolic) in all extracts (14.63-78.19% of the total extract). The extracts displayed a noteworthy antifungal potency with varying degrees of inhibition of growth with EC50 values ranged from 78.50 to 206.90 mg/L. The extracts obtained from the leaves of C. sempervirens showed that the highest inhibitory activity was obtained with the extract of altitude II (391 m) with MIC 565, 510, 380 and 710 mg/L against E. carotovora, R. fascians, and R. radiobacter and R. solanacearum, respectively.Conclusion:Based on antimicrobial activity, raw plant extracts can be a cost-effective way to protect crops from microbial pathogens. Because plant extracts contain several antimicrobial compounds, the development of resistant pathogens can be delayed.


2011 ◽  
Vol 2 ◽  
pp. 152-161 ◽  
Author(s):  
Hans J Ensikat ◽  
Petra Ditsche-Kuru ◽  
Christoph Neinhuis ◽  
Wilhelm Barthlott

Lotus leaves have become an icon for superhydrophobicity and self-cleaning surfaces, and have led to the concept of the ‘Lotus effect’. Although many other plants have superhydrophobic surfaces with almost similar contact angles, the lotus shows better stability and perfection of its water repellency. Here, we compare the relevant properties such as the micro- and nano-structure, the chemical composition of the waxes and the mechanical properties of lotus with its competitors. It soon becomes obvious that the upper epidermis of the lotus leaf has developed some unrivaled optimizations. The extraordinary shape and the density of the papillae are the basis for the extremely reduced contact area between surface and water drops. The exceptional dense layer of very small epicuticular wax tubules is a result of their unique chemical composition. The mechanical robustness of the papillae and the wax tubules reduce damage and are the basis for the perfection and durability of the water repellency. A reason for the optimization, particularly of the upper side of the lotus leaf, can be deduced from the fact that the stomata are located in the upper epidermis. Here, the impact of rain and contamination is higher than on the lower epidermis. The lotus plant has successfully developed an excellent protection for this delicate epistomatic surface of its leaves.


Sign in / Sign up

Export Citation Format

Share Document