Homogenous Multifunctional Microspheres Induce Ferroptosis to Promote the Anti-hepatocarcinoma Effect of Chemoembolization

Author(s):  
Minjiang Chen ◽  
Jie Li ◽  
Gaofeng Shu ◽  
Lin Shen ◽  
Enqi Qiao ◽  
...  

Abstract Transcatheter arterial chemoembolization (TACE) is one of the main palliative therapies for advanced hepatocellular carcinoma (HCC), which is also regarded as a promising therapeutic strategy for cancer treatment. However, drug-loaded microspheres (DLMs), as commonly used clinical chemoembolization drugs, still have the problems of uneven particle size and unstable therapeutic efficacy. Herein, gelatin was used as the wall material of the microspheres, and homogenous gelatin microspheres co-loaded with adriamycin and Fe3O4 nanoparticles (ADM/Fe3O4-MS) were further prepared by a high-voltage electrospray technology. The introduction of Fe3O4 nanoparticles into DLMs not only provided excellent T2-weighted magnetic resonance imaging (MRI) properties, but also improved the anti-tumor effectiveness under microwave-induced hyperthermia. The results showed that ADM/Fe3O4-MS plus microwave irradiation had significantly better antitumor efficacy than the other types of microspheres at both cell and animal levels. Our study further confirmed that ferroptosis was involved in the anti-tumor process of ADM/Fe3O4-MS plus microwave irradiation, and ferroptosis marker GPX4 was significantly decreased and ACSL4 was significantly increased, and ferroptosis inhibitors could reverse the tumor cell killing effect caused by ADM/Fe3O4-MS to a certain extent. Our results confirmed that microwave mediated hyperthermia could amplify the antitumor efficacy of ADM/Fe3O4-MS by activating ferroptosis and the introduction of Fe3O4 nanoparticles can significantly improve TACE for HCC. This study confirmed that it was feasible to use uniform-sized gelatin microspheres co-loaded with Fe3O4 nanoparticles and adriamycin to enhance the efficacy of TACE for HCC.

1991 ◽  
Vol 11 (6) ◽  
pp. 595-600 ◽  
Author(s):  
M. Castrén-Persons ◽  
T. Schröder ◽  
O. J. Rämö ◽  
P. Puolakkainen ◽  
E. Lehtonen

2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 890-890
Author(s):  
Andrei Irimia ◽  
Jun Kim ◽  
Shania Wang ◽  
Hyung Jun Lee ◽  
Van Ngo ◽  
...  

Abstract Estimating biological brain age (BA) has the potential of identifying individuals at relatively high risk for accelerated neurodegeneration. This study compares the brain’s chronological age (CA) to its BA and reveals the BA rate of change after mild traumatic brain injury (mTBI) in an aging cohort. Using T1-weighted magnetic resonance imaging (MRI) volumes and cortical thickness, volume, surface area, and Gaussian curvature obtained using FreeSurfer software; we formulated a multivariate linear regression to determine the rate of BA increase associated with mTBI. 95 TBI patients (age in years (y): μ = 41 y, σ = 17 y; range = 18 to 83) were compared to 462 healthy controls (HCs) (age: μ = 69 y, σ = 18 y; range = 25 to 95) over a 6-month time period following mTBI. Across the initial ~6 months following injury, patients’ BAs increased by ~3.0 ± 1.2 years due to their mTBIs alone, i.e., above and beyond typical brain aging. The superior temporal and parahippocampal gyri, two structures involved in memory formation and retrieval, exhibited the fastest rates of TBI-related BA. In both hemispheres, the volume of the hippocampus decreased (left: μ=0.28%, σ=4.40%; right: μ=0.12%, σ=4.84%). These findings illustrate BA estimation techniques’ potential to identify TBI patients with accelerated neurodegeneration, whose rate is strongly associated with the risk for dementia and other aging-related neurological conditions.


2016 ◽  
Vol 46 (9) ◽  
pp. 1971-1985 ◽  
Author(s):  
K. N. Jørgensen ◽  
S. Nerland ◽  
L. B. Norbom ◽  
N. T. Doan ◽  
R. Nesvåg ◽  
...  

BackgroundSchizophrenia and bipolar disorder share genetic risk factors and one possible illness mechanism is abnormal myelination. T1-weighted magnetic resonance imaging (MRI) tissue intensities are sensitive to myelin content. Therefore, the contrast between grey- and white-matter intensities may reflect myelination along the cortical surface.MethodMRI images were obtained from patients with schizophrenia (n = 214), bipolar disorder (n = 185), and healthy controls (n = 278) and processed in FreeSurfer. The grey/white-matter contrast was computed at each vertex as the difference between average grey-matter intensity (sampled 0–60% into the cortical ribbon) and average white-matter intensity (sampled 0–1.5 mm into subcortical white matter), normalized by their average. Group differences were tested using linear models covarying for age and sex.ResultsPatients with schizophrenia had increased contrast compared to controls bilaterally in the post- and precentral gyri, the transverse temporal gyri and posterior insulae, and in parieto-occipital regions. In bipolar disorder, increased contrast was primarily localized in the left precentral gyrus. There were no significant differences between schizophrenia and bipolar disorder. Findings of increased contrast remained after adjusting for cortical area, thickness, and gyrification. We found no association with antipsychotic medication dose.ConclusionsIncreased contrast was found in highly myelinated low-level sensory and motor regions in schizophrenia, and to a lesser extent in bipolar disorder. We propose that these findings indicate reduced intracortical myelin. In accordance with the corollary discharge hypothesis, this could cause disinhibition of sensory input, resulting in distorted perceptual processing leading to the characteristic positive symptoms of schizophrenia.


2021 ◽  
Vol 11 ◽  
pp. 18
Author(s):  
Swati Sharma ◽  
Chidi Nwachukwu ◽  
Carissa Wieseler ◽  
Sherif Elsherif ◽  
Haley Letter ◽  
...  

A wide variety of benign and malignant breast processes may generate hyperintense signal at T2-weighted magnetic resonance imaging (MRI). MRI has been traditionally used in the pre-treatment planning of breast cancer, in assessing treatment response and detecting recurrence. In this comprehensive review, we describe and illustrate the MRI features of a few common and uncommon T2 hyperintense breast lesions, with an emphasis on MRI features that help to characterize lesions based on morphological features, specific appearances on T1-and T2-weighted imaging, and enhancement characteristics on the dynamic post-contrast phase that are either diagnostic or aid in narrowing the differential diagnosis.


2017 ◽  
Vol 24 (8) ◽  
pp. 1105-1114 ◽  
Author(s):  
Miklos Palotai ◽  
Andrea Mike ◽  
Michele Cavallari ◽  
Erzsebet Strammer ◽  
Gergely Orsi ◽  
...  

Background: Reports on the relationships between white matter lesion load (WMLL) and fatigue and anxiety in multiple sclerosis (MS) are inconsistent. Objective: To investigate the association of total and tract-specific WMLL with fatigue and anxiety. Methods: Total and regional T2 WMLL was assessed for 19 tracts in 48 MS patients (30 females). ICBM-DTI-81 Atlas-based parcellation was combined with WMLL segmentation of T2-weighted magnetic resonance imaging (MRI). Fatigue, anxiety, and depression were assessed using Fatigue Impact Scale, State Trait Anxiety Inventory, and Beck Depression Inventory, respectively. Results: Fatigue, anxiety, and depression showed significant inter-correlation. We found no association between fatigue and total or regional WMLLs, whereas anxiety was associated with total and regional WMLLs in nine tracts. After adjusting for total WMLL, age, and depression, only the column and body of the fornix (CBF) remained significantly associated with anxiety. Post hoc analyses showed no CBF lesions on T1-weighted MRI and suggested, but could not confirm, that the septum pellucidum might play a role in the pathogenesis of anxiety. Conclusion: Our results suggest that anxiety in MS patients may have a neuropathological substrate in the septo-fornical area, which requires further validation using larger sample size and ultra-high-field MRI in targeted prospective studies.


2014 ◽  
Vol 18 (1) ◽  
Author(s):  
Nasreen Mahomed ◽  
Evance Chisama ◽  
Sanjay Prabhu

The ivy sign refers to diffuse bilateral leptomeningeal enhancement on post- contrastT1-weighted magnetic resonance imaging (MRI) and increased signal intensity in bilateralsubarachnoid spaces and perivascular spaces on T2-weighted fluid attenuation inversionrecovery (FLAIR) MRI sequences in patients with moyamoya disease.


Sign in / Sign up

Export Citation Format

Share Document