scholarly journals Characterization and Complete Genome Analysis of a Novel Escherichia Phage, vB_EcoM-RPN242

Author(s):  
Napakhwan Imklin ◽  
Pattaraporn Sripras ◽  
Narut Thanantong ◽  
Porntippa Lekcharoensuk ◽  
Rujikan Nasanit

Abstract The novel Escherichia phage vB_EcoM-RPN242 was isolated using a strain of Escherichia coli host originated from a diarrheal piglet. The phage was able to form plaques on the E. coli lawn at 15−45ºC. Moreover, it was stable over a wide pH (4−10) and temperature (4−70ºC) range. The vB_EcoM-RPN242 genome was found to be a linear, double-stranded DNA consisting of 154,840 base pairs. There were 195 protein-encoding genes and 2 tRNAs detected in the genome, however no unfavorable gene was found. According to the overall nucleotide sequence comparison, the vB_EcoM-RPN242 possibly represents a new phage species in the genus Agtrevirus.

2012 ◽  
Vol 79 (1) ◽  
pp. 411-414 ◽  
Author(s):  
Afonso G. Abreu ◽  
Vanessa Bueris ◽  
Tatiane M. Porangaba ◽  
Marcelo P. Sircili ◽  
Fernando Navarro-Garcia ◽  
...  

ABSTRACTAutotransporter (AT) protein-encoding genes of diarrheagenicEscherichia coli(DEC) pathotypes (cah,eatA,ehaABCDJ,espC,espI,espP,pet,pic,sat, andtibA) were detected in typical and atypical enteropathogenicE. coli(EPEC) in frequencies between 0.8% and 39.3%. Although these ATs have been described in particular DEC pathotypes, their presence in EPEC indicates that they should not be considered specific virulence markers.


2019 ◽  
Vol 8 (38) ◽  
Author(s):  
Douglas Pechacek ◽  
Myung Hwangbo ◽  
Russell Moreland ◽  
Mei Liu ◽  
Jolene Ramsey

Escherichia coli 4s is a Gram-negative bacterium found in the equine intestinal ecosystem alongside diverse other coliform bacteria and bacteriophages. This announcement describes the complete genome of the T7-like E. coli 4s podophage Penshu1. From its 39,263-bp genome, 54 protein-encoding genes and a 179-bp terminal repeat were predicted.


2021 ◽  
Vol 10 (47) ◽  
Author(s):  
Prasanna Mutusamy ◽  
Sasireigga Jaya Jothi ◽  
Su Yin Lee ◽  
Bent Petersen ◽  
Thomas Sicheritz-Ponten ◽  
...  

We characterized the complete genome sequence of the lytic Salmonella enterica bacteriophage PRF-SP1, isolated from Penang National Park, a conserved rainforest in northern Malaysia. The novel phage species from the Autographiviridae family has a 39,966-bp double-stranded DNA (dsDNA) genome containing 49 protein-encoding genes and shares 90.96% similarity with Escherichia phage DY1.


1988 ◽  
Vol 249 (2) ◽  
pp. 613-616 ◽  
Author(s):  
P M Jordan ◽  
B I A Mgbeje ◽  
S D Thomas ◽  
A F Alwan

1. The hemD gene, encoding uroporphyrinogen III synthase, has been located adjacent to the hemC gene at 85 min on the Escherichia coli chromosome. 2. The entire nucleotide sequence (741 base pairs) of the hemD gene is reported. 3. E. coli strains harbouring plasmics containing the hemD gene produce greatly elevated levels of uroporphyrinogen III synthase. 4. Purified uroporphyrinogen III synthase, isolated from the hemD-containing strain ST1046, has an Mr of 29,000, in close agreement with that predicted from the nucleotide sequence. 5. The existence of a hem operon is suggested.


2003 ◽  
Vol 69 (3) ◽  
pp. 1408-1416 ◽  
Author(s):  
Anja Knietsch ◽  
Tanja Waschkowitz ◽  
Susanne Bowien ◽  
Anke Henne ◽  
Rolf Daniel

ABSTRACT Enrichment of microorganisms with special traits and the construction of metagenomic libraries by direct cloning of environmental DNA have great potential for identifying genes and gene products for biotechnological purposes. We have combined these techniques to isolate novel genes conferring oxidation of short-chain (C2 to C4) polyols or reduction of the corresponding carbonyls. In order to favor the growth of microorganisms containing the targeted genes, samples collected from four different environments were incubated in the presence of glycerol and 1,2-propanediol. Subsequently, the DNA was extracted from the four samples and used to construct complex plasmid libraries. Approximately 100,000 Escherichia coli strains of each library per test substrate were screened for the production of carbonyls from polyols on indicator agar. Twenty-four positive E. coli clones were obtained during the initial screen. Sixteen of them contained a plasmid (pAK101 to pAK116) which conferred a stable carbonyl-forming phenotype. Eight of the positive clones exhibited NAD(H)-dependent alcohol oxidoreductase activity with polyols or carbonyls as the substrates in crude extracts. Sequencing revealed that the inserts of pAK101 to pAK116 encoded 36 complete and 17 incomplete presumptive protein-encoding genes. Fifty of these genes showed similarity to sequenced genes from a broad collection of different microorganisms. The genes responsible for the carbonyl formation of E. coli were identified for nine of the plasmids (pAK101, pAK102, pAK105, pAK107 to pAK110, pAK115, and pAK116). Analyses of the amino acid sequences deduced from these genes revealed that three (orf12, orf14, and orf22) encoded novel alcohol dehydrogenases of different types, four (orf5, sucB, fdhD, and yabF) encoded novel putative oxidoreductases belonging to groups distinct from alcohol dehydrogenases, one (glpK) encoded a putative glycerol kinase, and one (orf1) encoded a protein which showed no similarity to any other known gene product.


2013 ◽  
Vol 62 (11) ◽  
pp. 1728-1734 ◽  
Author(s):  
Dongguo Wang ◽  
Enping Hu ◽  
Jiayu Chen ◽  
Xiulin Tao ◽  
Katelyn Gutierrez ◽  
...  

A total of 69 strains of Escherichia coli from patients in the Taizhou Municipal Hospital, China, were isolated, and 11 strains were identified that were resistant to bacitracin, chloramphenicol, tetracycline and erythromycin. These strains were PCR positive for at least two out of three genes, ybjG, dacC and mdfA, by gene mapping with conventional PCR detection. Conjugation experiments demonstrated that these genes existed in plasmids that conferred resistance. Novel ybjG and dacC variants were isolated from E. coli strains EC2163 and EC2347, which were obtained from the sputum of intensive care unit patients. Genetic mapping showed that the genes were located on 8200 kb plasmid regions flanked by EcoRI restriction sites. Three distinct genetic structures were identified among the 11 PCR-positive strains of E. coli, and two contained the novel ybjG and dacC variants. The putative amino acid differences in the ybjG and dacC gene variants were characterized. These results provide evidence for novel variants of ybjG and dacC, and suggest that multiple drug resistance in hospital strains of E. coli depends on the synergistic function of ybjG, dacC and mdfA within three distinct genetic structures in conjugative plasmids.


2021 ◽  
Vol 12 ◽  
Author(s):  
Almaz Nigatu Tesfahun ◽  
Marina Alexeeva ◽  
Miglė Tomkuvienė ◽  
Aysha Arshad ◽  
Prashanna Guragain ◽  
...  

DNA polymerase III mis-insertion may, where not corrected by its 3′→ 5′ exonuclease or the mismatch repair (MMR) function, result in all possible non-cognate base pairs in DNA generating base substitutions. The most thermodynamically unstable base pair, the cytosine (C)⋅C mismatch, destabilizes adjacent base pairs, is resistant to correction by MMR in Escherichia coli, and its repair mechanism remains elusive. We present here in vitro evidence that C⋅C mismatch can be processed by base excision repair initiated by the E. coli formamidopyrimidine-DNA glycosylase (Fpg) protein. The kcat for C⋅C is, however, 2.5 to 10 times lower than for its primary substrate 8-oxoguanine (oxo8G)⋅C, but approaches those for 5,6-dihydrothymine (dHT)⋅C and thymine glycol (Tg)⋅C. The KM values are all in the same range, which indicates efficient recognition of C⋅C mismatches in DNA. Fpg activity was also exhibited for the thymine (T)⋅T mismatch and for N4- and/or 5-methylated C opposite C or T, Fpg activity being enabled on a broad spectrum of DNA lesions and mismatches by the flexibility of the active site loop. We hypothesize that Fpg plays a role in resolving C⋅C in particular, but also other pyrimidine⋅pyrimidine mismatches, which increases survival at the cost of some mutagenesis.


2021 ◽  
Author(s):  
Amir Emami ◽  
Neda Pirbonyeh ◽  
Fatemeh Javanmardi ◽  
Abdollah Bazargani ◽  
Afagh Moattari ◽  
...  

Aim: To differentiate Escherichia coli isolates from diarrheal pediatric patients in clinical laboratories. Materials & methods: Patients with watery diarrhea were selected for sampling and tested for Diarrheagenic E. coli (DEC) by API kit. DEC isolates were tested for phylotyping, pathotyping and presence of determined virulence-encoding genes by specific molecular methods. Results: About 50% of isolates were detected as DECs (>55 and >31% were categorized B2 and D phylotypes respectively). Enterotoxigenic E. coli was the most and Enteroinvasive E. coli was the lowest prevalent pathotypes. csg and fim genes were the most present virulence factors. Conclusion: Typing of E. coli isolates from stool specimens will help to determine the diversity of diarrheal pathogens and take proper decisions to reduce the health burden of diarrheal diseases.


2019 ◽  
Vol 8 (32) ◽  
Author(s):  
Yen-Te Liao ◽  
Yujie Zhang ◽  
Alexandra Salvador ◽  
Vivian C. H. Wu

Escherichia phage vB_EcoM-Sa45lw, a new member of the T4-like phages, was isolated from surface water in a produce-growing area. The phage, containing double-stranded DNA with a genome size of 167,353 bp and 282 predicted open reading frames (ORFs), is able to infect generic Escherichia coli and Shiga toxin-producing E. coli O45 and O157 strains.


Sign in / Sign up

Export Citation Format

Share Document