Synthesis, Characterization and Application of Organoclay for Adsorptive Desulfurization: Isothermal, kinetic and Thermodynamics Studies

Author(s):  
Muhammad Saeed ◽  
Aqsa Riaz ◽  
Azeem Intisar ◽  
Mazhar Iqbal Zafar ◽  
Humaria Fatima ◽  
...  

Abstract The present study encompasses the application of cost effective, organo-modified bentonite material for efficient desulfurization of model oil and real fuel. For the adsorptive desulfurization of oil, dibenzothiophene (DBT) was used as model compound. Various experimental parameters (time, temperature, adsorbent-amount and DBT concentration) were thoroughly investigated. The synthesized material was characterized via X-ray diffraction (XRD), X-ray Fluorescence (XRF), Scanning electron microscopy (SEM), Energy dispersive x-ray (EDX), Thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FT-IR). The modification exhibits the increase in interlayer spacing of clay as confirmed from XRD and modified material shows interesting morphology as compared to unmodified bentonite. The results showed that >90% of DBT removal was achieved under optimized conditions for B-BTC, B-BTB and B-DSS and >80% for B-BEHA, for model fuel oil. Additionally, the findings from desulfurization of real fuel oil declare that 96.76% and 95.83% removal efficiency was achieved for kerosene and diesel oil respectively, at optimized conditions and fuel properties follow ASTM specifications. The obtained findings well fitted with thermodynamic, isothermal (Langmuir) with adsorption capacity (70.8 (B-BTC), 66 (B-BTB), 61.2 (B-DSS) and 55.2 (B-BEHA) in mg/g) and pseudo-second-order kinetics. In thermodynamic studies, negative sign (\(\varDelta G^\circ )\) specifies the spontaneity whereas, \(\left(\varDelta H^\circ \right)\) endothermic and positive sign \((\varDelta S^\circ )\) show randomness after DBT adsorption.

Technologies ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 22
Author(s):  
Mozammel Mazumder ◽  
Rajib Das ◽  
Md Symon Jahan Sajib ◽  
Andrew Jewel Gomes ◽  
Mohammad Islam ◽  
...  

With increasingly stringent environmental regulations, desulfurization for gasoline oil production has become an important issue. Nowadays, desulfurization technologies have become an integral part of environmental catalysis studies. It is also important for processing of fuel for fuel-cells, which has a strict requirement for sulfur content for internal combustion engines. In this study, we focused on the preparation and characterization of magnesium hydroxide/aluminum supported NiO, ZnO, ZrO2, NiO-ZnO, NiO-ZrO2, adsorbents for the adsorptive desulfurization of liquid fuels. These hydrotalcite adsorbents were prepared by co-precipitation method and used for adsorption of thiophene (in n-pentane, as model fuel) and dibenzothiophene at ambient temperature and pressure. The physicochemical behaviors of the fresh adsorbents such as structure, composition, and bonding modes were determined using X-ray diffraction (XRD), Raman spectroscopy, Fourier-transform infrared spectroscopy (FTIR), energy dispersive X-Ray analysis (EDAX), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA). The sulfur concentration in the mixture (thiophene and n-pentane) was measured by UV-Vis spectrophotometry. The percentages of thiophene removal and the adsorption capacity (mg of sulfur per g of adsorbent) of the five adsorbents were compared. The adsorption performance confirmed that NiO-ZrO2 and NiO-ZnO adsorbents are more efficient in removing thiophene/dibenzothiophene than that of three other adsorbents. The qualitative studies using XPS confirmed the efficient adsorption nature of modified hydrotalcite adsorbents on dibenzothiophene.


Author(s):  
Prabal Boral ◽  
Atul K. Varma ◽  
Sudip Maity

AbstractFour coal samples from Jharia basin, India are treated with nitric acid in glacial acetic acid and aqueous media to find out the chemical, petrographic and spatial structure of the organic mass by X-ray diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR) techniques. X-ray parameters of coal like interlayer spacing (d002), crystallite size (Lc), aroamticity (fa), average number of aromatic layers (Nc), and coal rank (I26/I20) have been determined using profile-fitting software. Considerable variation is observed in treated coals in comparison to the demineralized coals. The d002 values of treated coals have increased in both the media showing increase in disordering of organic moieties. A linear relationship has been observed between d002 values with the volatile matter of the coals. Similarly, the d002 values show linear relationship with Cdmf contents for demineralized as well as for the treated coals in both the media. The Lc and Nc values have decreased in treated coals corresponding to demineralized coals. The present study shows that nitration in both the media is capable of removing the aliphatic side chains from the coals and aromaticity (fa) increases with increase in rank and shows a linear relationship with the vitrinite reflectance. The corresponding I26/I20 values are least for treated coals in glacial acetic acid medium followed by raw and then to treated coals in aqueous medium. FTIR studies show that coal arenes of the raw coals are converted into nitro-arenes in structurally modified coals (SMCs) in both the media, the corresponding bands at 1550–1490 and 1355–1315 cm−1 respectively. FTIR study confirms that nitration is the predominant phenomenon, though, oxidation and nitration phenomena takes place simultaneously during treatment with nitric acid to form SMCs. In comparison to raw coals, the SMCs show higher aromaticity and may be easily converted to coal derived products like activated carbon and specialty carbon materials.


RSC Advances ◽  
2021 ◽  
Vol 11 (34) ◽  
pp. 20769-20780
Author(s):  
Bhuneshwari Sahu ◽  
Ramsingh Kurrey ◽  
Manas Kanti Deb ◽  
Kamlesh Shrivas ◽  
Indrapal Karbhal ◽  
...  

We report a simple and cost-effective paper-based and colorimetric dual-mode detection of As(iii) and Pb(ii) based on glucose-functionalized gold nanoparticles under optimized conditions.


2003 ◽  
Author(s):  
Heinz-Ulrich Scheunemann ◽  
Bernd Loechel ◽  
Linke Jian ◽  
Daniel Schondelmaier ◽  
Yohannes M. Desta ◽  
...  
Keyword(s):  

2013 ◽  
Vol 29 (5) ◽  
pp. 574
Author(s):  
Ronan Spring ◽  
Mike Sheehy ◽  
Tom Carty
Keyword(s):  

Plants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 6
Author(s):  
Asma Tabasum ◽  
Mousa Alghuthaymi ◽  
Umair Yaqub Qazi ◽  
Imran Shahid ◽  
Qamar Abbas ◽  
...  

Pesticides are one of the main organic pollutants as they are highly toxic and extensively used worldwide. The reclamation of wastewater containing pesticides is of utmost importance. For this purpose, GO-doped metal ferrites (GO-Fe3O4 and GO-CoFe2O4) were prepared and characterized using scanning electron microscopy, X-ray diffraction and Fourier transform infrared spectroscopic techniques. Photocatalytic potentials of catalysts were investigated against acetamiprid’s degradation. A detailed review of the parametric study revealed that efficiency of overall Fenton’s process relies on the combined effects of contributing factors, i.e., pH, initial oxidant concentration, catalyst dose, contact time, and acetamiprid load. ~97 and ~90% degradation of the acetamiprid was achieved by GO-CoFe2O4 and GO-Fe3O4, respectively during the first hour under UV radiations at optimized reaction conditions. At optimized conditions (i.e., pH:3, [H2O2]: 14.5 mM (for Fe3O4, GO-Fe3O4, and GO-CoFe2O4) and 21.75 mM (for CoFe2O4), catalysts: 100 mgL−1, time: 60min) the catalysts exhibited excellent performance, with high degradation rate, magnetic power, easy recovery at the end, and efficient reusability (up to 5 cycles without any considerable loss in catalytic activity). A high magnetic character offers its easy separation from aqueous systems using an external magnet. Moreover, the combined effects of experimental variables were assessed simultaneously and justified using response surface methodology (RSM).


Author(s):  
I-Hsuan Chen ◽  
Jung-Hsien Chang ◽  
Ren-Jie Xie ◽  
Chia-Hui Tseng ◽  
Sheng-Rong Hsieh ◽  
...  

Abstract In this study, the easy-to-operate silver mirror reaction (SMR) was used for metallizing chromatography paper. The SMR-metallized paper was characterized by water contact angle measurements, a surface profiler, X-ray photoelectron spectroscopy, UV-vis spectroscopy, X-ray diffraction, and electrical resistance measurement. The characterization results show that Ag was successfully synthesized on cellulose fibers and was electrically conductive after cyclic bending. Moreover, this SMR-metallized paper was used as electrodes for fabricating a supercapacitor. This SMR-metallized paper could be used for realizing cost-effective flexible electronics applied in on-site biochemical sensing in resource-limited settings.


Author(s):  
Shrikant SAINI ◽  
Izuki Matsumoto ◽  
Sakura Kishishita ◽  
Ajay Kumar Baranwal ◽  
Tomohide Yabuki ◽  
...  

Abstract Hybrid halide perovskite has been recently focused on thermoelectric energy harvesting due to the cost-effective fabrication approach and ultra-low thermal conductivity. To achieve high performance, tuning of electrical conductivity is a key parameter that is influenced by grain boundary scattering and charge carrier density. The fabrication process allows tuning these parameters. We report the use of anti-solvent to enhance the thermoelectric performance of lead-free hybrid halide perovskite, CH3NH3SnI3, thin films. Thin films with anti-solvent show higher connectivity in grains and higher Sn+4 oxidation states which results in enhancing the value of electrical conductivity. Thin films were prepared by a cost-effective wet process. Structural and chemical characterizations were performed using x-ray diffraction, scanning electron microscope, and x-ray photoelectron spectroscopy. The value of electrical conductivity and the Seebeck coefficient were measured near room temperature. The high value of power factor (1.55 µW/m.K2 at 320 K) was achieved for thin films treated with anti-solvent.


Sign in / Sign up

Export Citation Format

Share Document