Cost-effective masks for deep x-ray lithography

Author(s):  
Heinz-Ulrich Scheunemann ◽  
Bernd Loechel ◽  
Linke Jian ◽  
Daniel Schondelmaier ◽  
Yohannes M. Desta ◽  
...  
Keyword(s):  
2013 ◽  
Vol 29 (5) ◽  
pp. 574
Author(s):  
Ronan Spring ◽  
Mike Sheehy ◽  
Tom Carty
Keyword(s):  

Author(s):  
I-Hsuan Chen ◽  
Jung-Hsien Chang ◽  
Ren-Jie Xie ◽  
Chia-Hui Tseng ◽  
Sheng-Rong Hsieh ◽  
...  

Abstract In this study, the easy-to-operate silver mirror reaction (SMR) was used for metallizing chromatography paper. The SMR-metallized paper was characterized by water contact angle measurements, a surface profiler, X-ray photoelectron spectroscopy, UV-vis spectroscopy, X-ray diffraction, and electrical resistance measurement. The characterization results show that Ag was successfully synthesized on cellulose fibers and was electrically conductive after cyclic bending. Moreover, this SMR-metallized paper was used as electrodes for fabricating a supercapacitor. This SMR-metallized paper could be used for realizing cost-effective flexible electronics applied in on-site biochemical sensing in resource-limited settings.


Author(s):  
Shrikant SAINI ◽  
Izuki Matsumoto ◽  
Sakura Kishishita ◽  
Ajay Kumar Baranwal ◽  
Tomohide Yabuki ◽  
...  

Abstract Hybrid halide perovskite has been recently focused on thermoelectric energy harvesting due to the cost-effective fabrication approach and ultra-low thermal conductivity. To achieve high performance, tuning of electrical conductivity is a key parameter that is influenced by grain boundary scattering and charge carrier density. The fabrication process allows tuning these parameters. We report the use of anti-solvent to enhance the thermoelectric performance of lead-free hybrid halide perovskite, CH3NH3SnI3, thin films. Thin films with anti-solvent show higher connectivity in grains and higher Sn+4 oxidation states which results in enhancing the value of electrical conductivity. Thin films were prepared by a cost-effective wet process. Structural and chemical characterizations were performed using x-ray diffraction, scanning electron microscope, and x-ray photoelectron spectroscopy. The value of electrical conductivity and the Seebeck coefficient were measured near room temperature. The high value of power factor (1.55 µW/m.K2 at 320 K) was achieved for thin films treated with anti-solvent.


2000 ◽  
Vol 14 (15) ◽  
pp. 563-570 ◽  
Author(s):  
M. ZAKAULLAH ◽  
IJAZ AKHTAR ◽  
S. F. MEHMOOD ◽  
A. WAHEED ◽  
G. MURTAZA

A time-resolved rugged X-ray detector (XRD) which may be used in intense radiation environment is developed. The detector is used to study the X-ray emission from a low-energy (2.3 kJ) Mather-type plasma focus energized by a 32 μF single capacitor, using hydrogen and argon (3:2) mixture as gas filling. In the detector, the electron emitter is made of nickel and aluminum. The sensitivity of the detector with nickel cathode is found to be very low. No signal could be recorded by masking the detector with even the 2 μm thick Al foil. When Al cathode is used in the XRD, the sensitivity of the detector increases abruptly. To stop the optical/ultraviolet radiation from approaching the active area, it is masked with 6 μm Al filter. It is found that an XRD with nickel cathode is not useful for X-ray detection in a low-energy plasma focus. However, due to its excellent response to vacuum ultraviolet radiation (≤600 Å), it may find application in the study of the axial rundown of current sheath, and its velocity. The X-ray emission from focus plasma is the highest at 0.5 mbar. With increase in pressure, the emission is dropped. At filling pressures of 2.0–2.5 mbar, the X-ray emission increases again. High X-ray emission at 0.5 mbar is due to interaction of energetic electrons in the current sheath with the anode surface, whereas moderately high emission at 2.0–2.5 mbar is caused by an axially moving shockwave.


2010 ◽  
Vol 75 ◽  
pp. 230-239
Author(s):  
Herbert O. Moser ◽  
Linke Jian ◽  
Shenbaga M.P. Kalaiselvi ◽  
Selven Virasawmy ◽  
Sivakumar M. Maniam ◽  
...  

The function of metamaterials relies on their resonant response to electromagnetic waves in characteristic spectral bands. To make metamaterials homogeneous, the size of the basic resonant element should be less than 10% of the wavelength. For the THz range up to the visible, structure details of 50 nm to 30 μm are required as are high aspect ratios, tall heights, and large areas. For such specifications, lithography, in particular, synchrotron radiation deep X-ray lithography, is the method of choice. X-ray masks are made via primary pattern generation by means of electron or laser writing. Several different X-ray masks and accurate mask-substrate alignment are necessary for architectures requiring multi-level lithography. Lithography is commonly followed by electroplating of metallic replica. The process can also yield mould inserts for cost-effective manufacture by plastic moulding. We made metamaterials based on rod-split-rings, split-cylinders, S-string bi-layer chips, and S-string meta-foils. Left-handed resonance bands range from 2.4 to 216 THz. Latest is the all-metal self-supported flexible meta-foil with pass-bands of 45% up to 70% transmission at 3.4 to 4.5 THz depending on geometrical parameters.


2009 ◽  
Vol 24 (1) ◽  
pp. 245-252 ◽  
Author(s):  
Robert Ianoş

Single-phase nanocrystalline 4CaO·Al2O3·Fe2O3 powders were prepared directly from the combustion reaction using a new cost-effective, time-saving, and environmentally friendly version of solution combustion synthesis. Instead of a single fuel, a fuel mixture of urea and β-alanine was used. It was shown by x-ray diffraction, energy-dispersive x-ray analysis, thermogravimetric analysis, and optical microscopy that this new version of the solution combustion synthesis allows the maximization of the exothermic effect associated with the combustion reaction. On the other hand, it was shown that the traditional version of combustion synthesis involving the use of a single fuel, such as urea or β-alanine, does not ensure the formation of Ca4Al2Fe2O10 unless subsequent thermal treatments are applied. It was suggested that the occurrence of combustion reactions cannot be regarded only in terms of adiabatic temperature, as the kinetic aspects overrule the thermodynamic ones.


2011 ◽  
Vol 356-360 ◽  
pp. 423-429
Author(s):  
Meng Ye ◽  
Jin Huang ◽  
Rui Chen ◽  
Qi Zhuang He

An elevated arsenic (As) content in groundwater imposes a great threat to people worldwide. Thus, developing new and cost-effective methods to remove As from groundwater and drinking water becomes a priority. Using Zero-Valent iron (ZVI) to remove As from water is a proven technology. In this study, ZVI modified SBA-15 mesoporous silicamolecular sieves (ZVI-SBA-15), was prepared, characterized, and used for removing arsenic from water. Wet impregnation, drying, and calcination steps led to iron inclusion within the mesopores. Iron oxide was reduced to ZVI by NaBH4, and the ZVI modified SBA-15 was obtained. Fourier-transform infrared spectroscopy confirmed the preparation process of the nitrate to oxide forms. The structure of the materials was confirmed by Powder X-ray diffraction. Its data indicated that the structure of ZVI-SBA-15 retained the host SBA-15 structure. Brunauer-Emmett-Teller analysis revealed a decrease in surface area and pore size, indicating ZVI-SBA-15 coating on the inner surfaces. Transmission electron micrographs also confirmed that modified SBA-15 retained the structure of the parent SBA-15 silica.It has a high uptake capability(more than 90 pecent) make it potentially attractive absorbent for the removal of arsenic from water.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Vidya S. Taur ◽  
Rajesh A. Joshi ◽  
Ramphal Sharma

The Ag-doped nanostructured CdS thin films are grown by simple, cost effective chemical ion exchange technique at room temperature on ITO-coated glass substrate. These as grown thin films are annealed at 100, 200, 300, and 400°C in air atmosphere for 1 hour. To study the effect of annealing on physicochemical and optoelectronic properties, these as grown and annealed thin films are characterized for structural, compositional, morphological, optical, and electrical properties. X-ray diffraction (XRD) pattern reveals polycrystalline nature of these thin films with increase in crystallite size from 6.4 to 11.2 nm, from XRD the direct identification of Ag doping in CdS thin films cannot be judged, while shift in characteristics peak position of CdS is observed. The Raman spectrum represents increase in full width at half maxima and intensity of characteristic peak, confirming the material modification upon annealing treatment. Presence of Cd, Ag, and S in energy dispersive X-ray analysis spectra (EDAX) confirms expected elemental composition in thin films. Scanning electron microscopy (SEM) images represent grain growth and agglomeration upon annealing. Red shift in optical absorbance strength and energy band gap values from 2.28 to 2.14 eV is obtained.I-Vresponse obtained from as grown and annealed thin films shows an enhancement in photosensitivity from 72% to 96% upon illumination to 100 mW/cm2light source.


2019 ◽  
Vol 777 ◽  
pp. 638-645 ◽  
Author(s):  
Ian Pompermayer Machado ◽  
Verônica Carvalho Teixeira ◽  
Cássio Cardoso Santos Pedroso ◽  
Hermi Felinto Brito ◽  
Lucas Carvalho Veloso Rodrigues

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Aaron N. Shugar ◽  
B. Lee Drake ◽  
Greg Kelley

AbstractAn innovative approach for the rapid identification of wood species is presented. By combining X-ray fluorescence spectrometry with convolutional neural network machine learning, 48 different wood specimens were clearly differentiated and identified with a 99% accuracy. Wood species identification is imperative to assess illegally logged and transported lumber. Alternative options for identification can be time consuming and require some level of sampling. This non-invasive technique offers a viable, cost-effective alternative to rapidly and accurately identify timber in efforts to support environmental protection laws and regulations.


Sign in / Sign up

Export Citation Format

Share Document