scholarly journals NLRP3 Inflammasome Promotes the Progression of Acute Myeloid Leukemia via IL-1β Pathway

Author(s):  
Chaoqin Zhong ◽  
Ruiqing Wang ◽  
Mingqiang Hua ◽  
Chen Zhang ◽  
Fengjiao Han ◽  
...  

Abstract Background: NLRP3 inflammasome has been reported to be associated with the pathogenesis of multiple solid tumors. However, the role of NLRP3 inflammasome in acute myeloid leukemia (AML) remains unclear. Methods: NLRP3 inflammasome expression in AML bone marrow samples was investigated via quantitative reverse transcription polymerase chain reaction (qRT-PCR) assays and further determined in a cohort of AML bone marrow via Western blot analysis. Cell proliferation and flow cytometry assays were performed to confirm the roles of NLRP3 in AML proliferation, cell cycle regulation, and apoptosis. A mouse model with up-regulated NLRP3 expression was constructed by lentiviral transfection and a model with down-regulated expression was established by hematopoietic stem cell transplantation.Results: NLRP3 inflammasome is over-expressed and highly activated in AML bone marrow leukemia cells, which is correlated with poor prognosis. The activation of NLRP3 inflammasome in AML cells promotes leukemia cells proliferation, inhibits apoptosis and increases resistance to chemotherapy, while inactivation of NLRP3 by caspase-1 or NF-κB inhibitor shows leukemia-suppressing effects. Bayesian networks analysis and cell co-culture tests further suggests that NLRP3 inflammasome acts through IL-1β but not IL-18 in AML. Knocking down endogenous IL-1β or anti-IL-1β antibody inhibits leukemia cells whereas IL-1β cytokine enhances leukemia proliferation. In AML murine model, up-regulation of NLRP3 increases the leukemia burden in bone marrow, spleen and liver, and shortens the survival time; furthermore, knocking out NLRP3 inhibits leukemia progression. Conclusions: Collectively, all these evidences demonstrated that NLRP3 inflammasome promotes AML progression in an IL-1β dependent manner, and targeting NLRP3 inflammasome may provide a novel therapeutic option for AML.

2021 ◽  
Vol 12 ◽  
Author(s):  
Chaoqing Zhong ◽  
Ruiqing Wang ◽  
Mingqiang Hua ◽  
Chen Zhang ◽  
Fengjiao Han ◽  
...  

NLRP3 inflammasome has been reported to be associated with the pathogenesis of multiple solid tumors. However, the role of NLRP3 inflammasome in acute myeloid leukemia (AML) remains unclear. We showed that NLRP3 inflammasome is over-expressed and highly activated in AML bone marrow leukemia cells, which is correlated with poor prognosis. The activation of NLRP3 inflammasome in AML cells promotes leukemia cells proliferation, inhibits apoptosis and increases resistance to chemotherapy, while inactivation of NLRP3 by caspase-1 or NF-κB inhibitor shows leukemia-suppressing effects. Bayesian networks analysis and cell co-culture tests further suggest that NLRP3 inflammasome acts through IL-1β but not IL-18 in AML. Knocking down endogenous IL-1β or anti-IL-1β antibody inhibits leukemia cells whereas IL-1β cytokine enhances leukemia proliferation. In AML murine model, up-regulation of NLRP3 increases the leukemia burden in bone marrow, spleen and liver, and shortens the survival time; furthermore, knocking out NLRP3 inhibits leukemia progression. Collectively, all these evidences demonstrate that NLRP3 inflammasome promotes AML progression in an IL-1β dependent manner, and targeting NLRP3 inflammasome may provide a novel therapeutic option for AML.


Haematologica ◽  
2019 ◽  
Vol 105 (9) ◽  
pp. 2273-2285 ◽  
Author(s):  
James Ropa ◽  
Nirmalya Saha ◽  
Hsiangyu Hu ◽  
Luke F. Peterson ◽  
Moshe Talpaz ◽  
...  

Epigenetic regulators play a critical role in normal and malignant hematopoiesis. Deregulation, including epigenetic deregulation, of the HOXA gene cluster drives transformation of about 50% of acute myeloid leukemia. We recently showed that the Histone 3 Lysine 9 methyltransferase SETDB1 negatively regulates the expression of the pro-leukemic genes Hoxa9 and its cofactor Meis1 through deposition of promoter H3K9 trimethylation in MLL-AF9 leukemia cells. Here, we investigated the biological impact of altered SETDB1 expression and changes in H3K9 methylation on acute myeloid leukemia. We demonstrate that SETDB1 expression is correlated to disease status and overall survival in acute myeloid leukemia patients. We recapitulated these findings in mice, where high expression of SETDB1 delayed MLL-AF9 mediated disease progression by promoting differentiation of leukemia cells. We also explored the biological impact of treating normal and malignant hematopoietic cells with an H3K9 methyltransferase inhibitor, UNC0638. While myeloid leukemia cells demonstrate cytotoxicity to UNC0638 treatment, normal bone marrow cells exhibit an expansion of cKit+ hematopoietic stem and progenitor cells. Consistent with these data, we show that bone marrow treated with UNC0638 is more amenable to transformation by MLL-AF9. Next generation sequencing of leukemia cells shows that high expression of SETDB1 induces repressive changes to the promoter epigenome and downregulation of genes linked with acute myeloid leukemia, including Dock1 and the MLL-AF9 target genes Hoxa9, Six1, and others. These data reveal novel targets of SETDB1 in leukemia that point to a role for SETDB1 in negatively regulating pro-leukemic target genes and suppressing acute myeloid leukemia.


2020 ◽  
Vol 4 (20) ◽  
pp. 5257-5268
Author(s):  
Yiyang Chen ◽  
Lina Marie Hoffmeister ◽  
Yasmin Zaun ◽  
Lucas Arnold ◽  
Kurt Werner Schmid ◽  
...  

Abstract Murine models of myeloid neoplasia show how leukemia infiltration alters the hematopoietic stem cell (HSC) niche to reinforce malignancy at the expense of healthy hematopoiesis. However, little is known about the bone marrow architecture in humans and its impact on clinical outcome. Here, we dissect the bone marrow niche in patients with acute myeloid leukemia (AML) at first diagnosis. We combined immunohistochemical stainings with global gene expression analyses from these AML patients and correlated them with clinical features. Mesenchymal stem and progenitor cells (MSPCs) lost quiescence and significantly expanded in the bone marrow of AML patients. Strikingly, their HSC- and niche-regulating capacities were impaired with significant inhibition of osteogenesis and bone formation in a cell contact–dependent manner through inhibition of cytoplasmic β-catenin. Assessment of bone metabolism by quantifying peripheral blood osteocalcin levels revealed 30% lower expression in AML patients at first diagnosis than in non-leukemic donors. Furthermore, patients with osteocalcin levels ≤11 ng/mL showed inferior overall survival with a 1-year survival rate of 38.7% whereas patients with higher osteocalcin levels reached a survival rate of 66.8%. These novel insights into the human AML bone marrow microenvironment help translate findings from preclinical models and detect new targets which might pave the way for niche-targeted therapies in AML patients.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 4818-4818
Author(s):  
Yanwen Zheng ◽  
Zhengwei Mao ◽  
Bin Yin

Abstract Abstract 4818 Acute myeloid leukemia (AML) is a detrimental disease with difficult diagnosis and treatment. Understanding the biology of AML at the molecular and cellular levels would be essential to successful management of the disease. However, the notoriously known difficulty in manipulation of leukemia cells has long hindered the dissection of AML pathogenesis. The advent of CdSe/ZnS quantum dots (QDs) represents an important advancement in the research field of nanotechnology, which have recently also been applied for imaging of live cells. Here, we have introduced a non-genetic approach of marking blood cells, by taking advantage of QD technology. We compared QDs complexed with different vehicles, including a peptide Tat (QDs-Tat), cationic polymer Turbofect (QDs-Tf) and liposome Lipofectamine 2000 (QDs-Lip), in their abilities to mark cells. QDs-Tat showed the highest efficiency in delivery into hematopoietic cells, among the three vehicles. We then examined QDs-Tat labelling of leukemia cell lines, and found that QDs-Tat could label 293T, bone marrow (BM) cells, THP-1, MEG-01 and HL-60 with a decreasing efficiency. The efficiency of QDs-Tat delivery was dependent on the concentration of QDs-Tat applied, but not the length of incubation time. In addition, more uniform intracellular distributions of QDs in 293T and leukemia cells were obtained with QDs-Tat, compared with the granule-like formation obtained with QDs-Lip. Clearly, QD fluorescence was sharp and tolerant to repetitive photo excitations, and could be detected in 293T for up to one week following labelling. In summary, our results suggest that QDs have provided a photostable, non-genetic and transient approach that labels normal and malignant hematopoietic cells in a cell type-, vehicle-, and QD concentration-dependent manner. We expect for potentially wide applications of QDs as an easy and fast tool assisting investigations of various types of blood cells in the near future. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2923-2923
Author(s):  
Shuying Chen ◽  
Qing Rao ◽  
Haiyan Xing ◽  
Jing Yu ◽  
Huan Li ◽  
...  

Abstract Acute myeloid leukemia (AML) is a hematological malignancy resulting from the transformation of normal hematopoietic stem cell (HSC). Except for the intrinsic factors, it is acceptable that some extrinsic events from microenvironment could be the important co-factors in the development of leukemia. In addition to the specific component, as an extrinsic factor, interaction between HSC and bone marrow niche regulates HSCs fate. Disruption on the interactions also influences hematopoiesis. It has become evident that Rac members of Rho GTPases family are important molecules regulating HSCs interactions with hematopoietic microenvironment and activation of Rac1 are observed in a serials of leukemia cells. We previously reported that Rac1 is highly expressed in leukemia cells and found that activation of Rac1 GTPase lead to an increase in leukemia cells migration, chemotherapy resistance, quiescence and trafficking to bone marrow niche. Furthermore, we showed that Rac1 mediated the localization in niche is further attributable to the maintenance of LSC quiescence. In this study, we investigated the effects of active Rac1 GTPase in the transformation of HSC and determined if the activation of Rac1GTPase could promote the interaction of HSC with osteoblastic niche and further contribute to the leukomogenesis. By forced expression of a constitutively active form of Rac1 GTPase (Rac1 V12)in c-Kit+ hematopoietic stem/progenitor cell, we show that activation of Rac1 GTPase promotes cell migration, adhesion and colony formation, and also lead to an increase in the frequency of cells in quiescent state. Gene expression analysis shows that activation of Rac1 up-regulates the expression of several molecules that mediated the interaction of LSC with osteoblastic niche, as well as the cell cycle inhibitors such as p21, p27, and p57. Furthermore, we established a mouse model of acute myeloid leukemia by transduction murine c-kit+HSPC with Rac1 V12 combined with AML1-ETO9a, followed by transplantation into lethally irradiated mice. To investigate the role of Rac1 activation in leukemogenesis in vivo, we treated the AML1-ETO-Rac1 leukemia cells with Rac1 GTPase inhibitor EHT1846 and then transplanted into recipient mice. After 40 μM EHT1846 treatment, no engraftment of AML cells in recipient mice was observed. Kaplan-Meier analyses indicate that treatment with EHT1846 significantly prolongs survival of the transplanted mice. 20μM dose of EHT1846 was less effective. These data indicated that active Rac1 might be an important contributing factor to leukemogenesis. In addition, short-term homing assays showed that EHT 1846 treatment causes a marked inhibition of AML cell homing into both bone marrow and spleen as compared with controls, indicating that Rac1 mediated homing could be an important step and participated in the leukemogensis. Altogether, our data suggest that activation of Rac1 GTPase is critical for the interaction between HSCs with BM niche and even be contributed to leukemia development. Disclosures Wang: Novartis: Consultancy; Bristol Myers Squibb: Consultancy.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3439-3439
Author(s):  
Maria Rodriguez Zabala ◽  
Ramprasad Ramakrishnan ◽  
Katrin Reinbach ◽  
Leal Oburoglu ◽  
Somadri Ghosh ◽  
...  

Abstract Disease relapse in patients with acute myeloid leukemia (AML) is associated with a failure of current treatments to eradicate leukemia stem cells (LSCs), a self-renewing population of cells responsible for disease progression and maintenance. Thus, novel therapeutic strategies designed to specifically target LSCs while sparing normal hematopoietic stem cells are needed. To identify dependencies in LSCs that may reveal new treatment opportunities, we performed an in vivo CRISPR/Cas9 dropout screen in the widely used MLL-AF9-driven AML murine model. The pooled lentiviral CRISPR library was designed to target 960 genes encoding cell surface proteins expressed on MLL-AF9 AML cells as these are accessible for therapeutic targeting. The facilitated glucose transporter member 1(GLUT1), a major mediator of cellular glucose uptake, emerged as the highest ranked dependency in the screen, with all 6 sgRNAs depleted more than 10-fold in vivo. Consistent with the results from the screen, validation experiments confirmed that sgRNA-mediated GLUT1 disruption in c-Kit +Cas9 +dsRed +MLL-AF9 cells led to a 5-fold reduction in the establishment of leukemia in both the bone marrow and spleen of recipient mice. In line with these in vivo observations, leukemia cells expressing GLUT1 sgRNAs were rapidly depleted over time in an ex vivo competition assay (p<0.0001). GLUT1 disruption also led to a marked increase in mean survival from 28 to 73 days in mice transplanted with sorted GLUT1 sgRNA-expressing leukemia cells relative to controls. Notably, while GLUT1 loss did not affect apoptosis or cell-cycle state, it led to a more than two-fold increase in the surface expression of the myeloid differentiation marker Gr-1 (p=0.0002). Interestingly, knockdown of GLUT1 lead to reduced mRNA expression levels of key downstream genes of MLL-driven leukemia Meis1 (p<0.0001) and Hoxa9 (p=0.0013) , both of which are commonly downregulated upon differentiation. These findings suggest that GLUT1 ablation arrests AML cell growth at least in part via accelerated differentiation and attenuated cell proliferation. Given GLUT1-mediated glucose transfer constitutes the first rate-limiting step for glucose metabolism, we assessed the metabolic profile of MLL-AF9 AML cells following loss of GLUT1. Bioenergetic profiling revealed that the rate of glycolysis was significantly decreased upon GLUT1 knockdown, as measured by a decrease in extracellular acidification rate (ECAR), glucose uptake, hexokinase activity and extracellular lactate production. To further assess the feasibility of GLUT1 inhibition as a therapy for AML patients, we treated murine cKit +MLL-AF9 leukemia cells with BAY-876, a potent and highly selective GLUT1 inhibitor. BAY-876 impaired tumor growth following 24hr (IC 50 60.3 nM) and 48hr (IC 50 68.8 nM) treatment ex vivo in a dose-dependent manner. Interestingly, the inhibitory effect on the counterpart healthy bone marrow c-Kit + cells was significantly weaker (24hr IC 50 347.7 nM; 48hr IC 50 258.4nM), indicating selective targeting of LSCs. To test the efficacy of BAY-876 as an anti-leukemic agent in vivo, sublethally irradiated mice were transplanted with c-Kit +MLL-AF9 AML cells and 3 days post-injection, were randomised into two groups (Veh n=4; BAY-876 n=6) and orally treated with either vehicle or 4mg/kg of BAY-876 daily. Following 10 days of treatment, mice were sacrificed and leukemia burden was assessed. Notably, substantially lower levels of leukemia cells in the bone marrow (p=0.0095), spleen (p=0.0095), and peripheral blood (p=0.036) were observed in the BAY-876 treatment group with no significant loss of body weight. Consistent with these findings, the average spleen weight was reduced by 66% upon BAY-876 treatment (p=0.0136). Collectively, we demonstrate that MLL-AF9-driven AML cells are dependent on GLUT1 for continued growth and survival. Targeting of GLUT1 downregulates glycolysis and induces cellular differentiation. We report that genetic or pharmacological inhibition of GLUT1 is sufficient to impair leukemic growth in vitro and in vivo, highlighting a potential therapeutic opportunity for disarming intrinsic metabolic dependencies of LSCs. Ongoing studies are aimed at translating these findings to the human disease and exploring combinatorial therapies that may act synergistically to overcome mechanisms of therapy resistance and metabolic plasticity. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2001 ◽  
Vol 98 (4) ◽  
pp. 1166-1173 ◽  
Author(s):  
Gerald G. Wulf ◽  
Rui-Yu Wang ◽  
Ingrid Kuehnle ◽  
Douglas Weidner ◽  
Frank Marini ◽  
...  

The hematopoietic stem cell underlying acute myeloid leukemia (AML) is controversial. Flow cytometry and the DNA-binding dye Hoechst 33342 were previously used to identify a distinct subset of murine hematopoietic stem cells, termed the side population (SP), which rapidly expels Hoechst dye and can reconstitute the bone marrow of lethally irradiated mice. Here, the prevalence and pathogenic role of SP cells in human AML were investigated. Such cells were found in the bone marrow of more than 80% of 61 patients and had a predominant CD34low/− immunophenotype. Importantly, they carried cytogenetic markers of AML in all 11 cases of active disease examined and in 2 out of 5 cases in complete hematological remission. Comparison of daunorubicin and mitoxantrone fluorescence emission profiles revealed significantly higher drug efflux from leukemic SP cells than from non-SP cells. Three of 28 SP cell transplants generated overt AML-like disease in nonobese diabetic–severe combined immunodeficient mice. Low but persistent numbers of leukemic SP cells were detected by molecular and immunological assays in half of the remaining mice. Taken together, these findings indicate that SP cells are frequently involved in human AML and may be a target for leukemic transformation. They also suggest a mechanism by which SP cells could escape the effects of cytostatic drugs and might eventually contribute to leukemia relapse.


Cells ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 482 ◽  
Author(s):  
Jessica Liliane Paz ◽  
Debora Levy ◽  
Beatriz Araujo Oliveira ◽  
Thatiana Correia de Melo ◽  
Fabio Alessandro de Freitas ◽  
...  

7-Ketocholesterol (7-KC) is a cholesterol oxidation product with several biological functions. 7-KC has the capacity to cause cell death depending on the concentration and specific cell type. Mesenchymal stem cells (MSCs) are multipotent cells with the ability to differentiate into various types of cells, such as osteoblasts and adipocytes, among others. MSCs contribute to the development of a suitable niche for hematopoietic stem cells, and are involved in the development of diseases, such as leukemia, to a yet unknown extent. Here, we describe the effect of 7-KC on the death of bone marrow MSCs from patients with acute myeloid leukemia (LMSCs). LMSCs were less susceptible to the death-promoting effect of 7-KC than other cell types. 7-KC exposure triggered the extrinsic pathway of apoptosis with an increase in activated caspase-8 and caspase-3 activity. Mechanisms other than caspase-dependent pathways were involved. 7-KC increased ROS generation by LMSCs, which was related to decreased cell viability. 7-KC also led to disruption of the cytoskeleton of LMSCs, increased the number of cells in S phase, and decreased the number of cells in the G1/S transition. Autophagosome accumulation was also observed. 7-KC downregulated the SHh protein in LMSCs but did not change the expression of SMO. In conclusion, oxiapoptophagy (OXIdative stress + APOPTOsis + autophagy) seems to be activated by 7-KC in LMSCs. More studies are needed to better understand the role of 7-KC in the death of LMSCs and the possible effects on the SHh pathway.


Sign in / Sign up

Export Citation Format

Share Document