scholarly journals Who pollutes and who suffers from air pollution in India

Author(s):  
Narasimha Rao ◽  
Gregor Kiesewetter ◽  
Jihoon Min ◽  
Shonali Pachauri ◽  
Fabian Wagner

Abstract Airborne fine particulate matter (PM2.5) is the most important environmental risk factor for premature mortality worldwide, and the likely cause of several hundred thousand premature deaths every year in India. Indian households also contribute to ambient PM2.5 to different extents from a number of sources, including biomass-burning cook stoves, transport and industrial manufacturing triggered by household consumption. In this study, we quantify the PM2.5 contributions by source from, as well as the mortality burden suffered by, individual urban and rural income deciles. We find that the impacts are distributed differently from contributions. Indirect emissions associated with household consumption contribute almost twice as much to ambient PM2.5 concentrations as direct emissions from biomass cook stoves. We show that the mortality risk from these indirect sources fall disproportionately on lower-income households, exacerbating the mortality risks they already face from using biomass-burning cook stoves. As a result, economy-wide end-of-pipe controls can reduce inequity in contributions to ambient air pollution. However, due to the overwhelming role of household indoor air pollution in premature deaths among the low-income population, clean cook stoves reduce overall inequality in terms of mortality risks to a far greater extent.

Author(s):  
Peter Franklin ◽  
Mark Tan ◽  
Naomi Hemy ◽  
Graham L. Hall

There is a growing body of research on the association between ambient air pollution and adverse birth outcomes. However, people in high income countries spend most of their time indoors. Pregnant women spend much of that time at home. The aim of this study was to investigate if indoor air pollutants were associated with poor birth outcomes. Pregnant women were recruited prior to 18 weeks gestation. They completed a housing questionnaire and household chemical use survey. Indoor pollutants, formaldehyde (HCHO), nitrogen dioxide (NO2) and volatile organic compounds (VOCs), were monitored in the women’s homes at 34 weeks gestation. Gestational age (GA), birth weight (BW) and length (BL) and head circumference (HC) were collected from birth records. The associations between measured pollutants, and pollution surrogates, were analysed using general linear models, controlling for maternal age, parity, maternal health, and season of birth. Only HCHO was associated with any of the birth outcomes. There was a 0.044 decrease in BW z-score (p = 0.033) and 0.05 decrease in HC z-score (p = 0.06) for each unit increase in HCHO. Although HCHO concentrations were very low, this finding is consistent with other studies of formaldehyde and poor birth outcomes.


2020 ◽  
Author(s):  
Wenjun Meng ◽  
Qirui Zhong ◽  
Yilin Chen ◽  
Huizhong Shen ◽  
Shu Tao

<p>In addition to many recent actions taken to reduce emissions from energy production, industry, and transportation, a new campaign substituting residential solid fuels with electricity or natural gas has been launched in Beijing, Tianjin, and other 26 municipalities in northern China, aiming at solving severe ambient air pollution in the region. Quantitative analysis shows that the campaign can accelerate residential energy transition significantly, and if the planned target can be achieved, more than 60% of households are projected to remove solid fuels by 2021, compared with less than 20% without the campaign. Emissions of major air pollutants will be reduced substantially. With 60% substitution realized, emission of primary PM2.5 and contribution to ambient PM2.5 concentration in 2021 are projected to be 30% and 41% of those without the campaign. With 60% substitution, average indoor PM2.5 concentrations in living rooms in winter are projected to be reduced from 209 (190-230) μg/m3 to 125 (99-150) μg/m3. The population-weighted PM2.5 concentrations can be reduced from 140 μg/m3 in 2014 to 78 μg/m3 or 61 μg/m3 in 2021 given that 60% or 100% substitution can be accomplished. Although the original focus of the campaign was to address ambient air quality, exposure reduction comes more from improved indoor air quality because approximately 90% of daily exposure of the population is attributable to indoor air pollution. Women benefit more than men.</p>


Author(s):  
Ernesto Sánchez-Triana ◽  
Bjorn Larsen ◽  
Santiago Enriquez ◽  
Andreia Costa Santos

Air pollution of fine particulates (PM2.5) is a leading cause of mortality worldwide. It is estimated that ambient PM2.5 air pollution results in between 4.1 million and 8.9 million premature deaths annually. According to the World Bank, the health effects of ambient PM2.5 air pollution had a cost of $6.4 trillion in purchasing power parity (PPP) adjusted dollars in 2019, equivalent to 4.8% of global gross domestic product (PPP adjusted) that year. Estimating the health effects and cost of ambient PM2.5 air pollution involves three steps: (1) estimating population exposure to pollution; (2) estimating the health effects of such exposure; and (3) assigning a monetary value to the illnesses and premature deaths caused by ambient air pollution. Estimating population exposure to ambient PM2,5 has gone from predominantly using ground level monitoring data mainly in larger cities to estimates of nationwide population weighted exposures based on satellite imagery and chemical transport models along with ground level monitoring data. The Global Burden of Disease 2010 (GBD 2010) provided for the first time national, regional and global estimates of exposures to ambient PM2.5. The GBD exposure estimates have also evolved substantially from 2010 to 2019, especially national estimates in South Asia, the Middle East and North Africa, Sub-Saharan Africa and Latin America and the Caribbean. Estimation of health effects of ambient PM2.5 has also undergone substantial developments during the last two decades. These developments involve: i) going from largely estimating health effects associated with variations in daily exposures to estimating health effects of annual exposure; ii) going from estimating all-cause mortality or mortality from broad disease categories (i.e., cardiopulmonary diseases) to estimating mortality from specific diseases; and iii) being able to estimate health effects over a wide range of exposure that reflect ambient and household air pollution exposure levels in low- and middle-income countries. As to monetary valuation of health effects of ambient air pollution, estimates in most low- and middle-income countries still rely on benefit transfer of values of statistical life (VSL) from high-income countries.


Author(s):  
William Mueller ◽  
Kraichat Tantrakarnapa ◽  
Helinor Jane Johnston ◽  
Miranda Loh ◽  
Susanne Steinle ◽  
...  

Abstract Background There is a growing evidence that exposure to ambient particulate air pollution during pregnancy is associated with adverse birth outcomes, including reduced birth weight (BW). The objective of this study was to quantify associations between BW and exposure to particulate matter (PM) and biomass burning during pregnancy in Thailand. Methods We collected hourly ambient air pollutant data from ground-based monitors (PM with diameter of <10 µm [PM10], Ozone [O3], and nitrogen dioxide [NO2]), biomass burning from satellite remote sensing data, and individual birth weight data during 2015–2018. We performed a semi-ecological analysis to evaluate the association between mean trimester exposure to air pollutants and biomass burning with BW and low-birth weight (LBW) (<2500 g), adjusting for gestation age, sex, previous pregnancies, mother’s age, heat index, season, year, gaseous pollutant concentrations, and province. We examined potential effect modification of PM10 and biomass burning exposures by sex. Results There were 83,931 eligible births with a mean pregnancy PM10 exposure of 39.7 µg/m3 (standard deviation [SD] = 7.7). The entire pregnancy exposure was associated with reduced BW both for PM10 (−6.81 g per 10 µg/m3 increase in PM10 [95% CI = −12.52 to −1.10]) and biomass burning (−6.34 g per 1 SD increase in fires/km2 [95% CI = −11.35 to −1.34]) only after adjustment for NO2. In contrast with these findings, a reduced odds ratio (OR) of LBW was associated with PM10 exposure only in trimesters one and two, with no relationship across the entire pregnancy period. Associations with biomass burning were limited to increased ORs of LBW with exposure in trimester three, but only for male births. Conclusion Based on our results, we encourage further investigation of air pollution, biomass burning and BW in Thailand and other low-income and middle-income countries.


2018 ◽  
Vol 1 (2) ◽  
pp. 60
Author(s):  
Anggrika Riyanti ◽  
Peppy Herawati ◽  
Nyimas Hazana Pajriani

Transportation sector has a very big influence in air pollution. Increase the number of vehicles will caused higher air pollution, such as NO2. The increase in ambient air pollution is feared to have an impact on indoor air pollution. This study purposed is to determine the relationship between  NO2 concentration in ambient to indoor air.  This study used kuantitatif methods with purposive sampling for one month in Simpang Pulai Jambi City.  The relationship between NO2 concentration of ambient air and indoor air was analyzed using simple pearson correlation. The result showed that there was no significant relationship between NO2 concentration in ambient to indoor air with correlation value (r) is 0,437.  The highest NO2 concentration found on the third week in ambient 109,139 µg/m3and indoor air 70,133 µg/m3.  From analysis in one month showed that NO2 concentration in Simpang Kawat Jambi City still meet the air quality standard (150 μg / m3) in Government Regulation Number 41 Year 1999 about Air Pollution Control.


2006 ◽  
Vol 17 (2) ◽  
pp. 17-22 ◽  
Author(s):  
M Wentzel

High levels of air pollution caused by domestic coal burning create human health problems and unwarranted economic loss. The associated health cost is estimated at R1.2 billion per annum. The Basa Njengo Magogo (BNM) alternative fire lighting method represents the highest impact on health from a benefit-cost and employment point of view since the method can potentially reduce ambient air pollution caused by the use of household coal in a relatively short period, by approximately 40-50%. In a pilot study funded by the Department of Minerals and Energy (DME), the method was demonstrated to 16 000 households through a series of direct demonstrations in Orange Farm. The study found that 99% of households who attended a demonstration used the BNM method and continued to use it after a month, households saved on average 25 kilograms of coal, translating in a R26 saving per month. A wide scale implementation of the BNM method holds the potential not only to reduce air pollution but also to result in coal and monetary savings for low-income households.


2020 ◽  
Vol 3 (1) ◽  
pp. 15-16
Author(s):  
Saeed Yari ◽  
Hanns Moshammer

The advent of a new Corona virus, SARS-CoVi-2, causing COVID-19, which first began in Wuhan, China, and then spread worldwide, has created a global public health crisis [1]. The sudden and far-reaching pandemic has raised many immediate questions. A very important goal of public health is to identify environmental factors that affect the spread and severity of the disease. Air pollution is one of the most well-known causes of long-term inflammation, which ultimately leads to increased immune system hyperactivity [2]. Air pollution is one of the leading causes of death and is estimated to play a role in nearly 5 million premature deaths worldwide in 2017 alone. Numerous scientific studies have linked air pollution to a variety of health concerns, including premature death in patients with heart or lung disease, non-fatal heart attacks, irregular heartbeats, and severe asthma [3].


2019 ◽  
Vol 116 (34) ◽  
pp. 16773-16780 ◽  
Author(s):  
Wenjun Meng ◽  
Qirui Zhong ◽  
Yilin Chen ◽  
Huizhong Shen ◽  
Xiao Yun ◽  
...  

In addition to many recent actions taken to reduce emissions from energy production, industry, and transportation, a new campaign substituting residential solid fuels with electricity or natural gas has been launched in Beijing, Tianjin, and 26 other municipalities in northern China, aiming at solving severe ambient air pollution in the region. Quantitative analysis shows that the campaign can accelerate residential energy transition significantly, and if the planned target can be achieved, more than 60% of households are projected to remove solid fuels by 2021, compared with fewer than 20% without the campaign. Emissions of major air pollutants will be reduced substantially. With 60% substitution realized, emission of primary PM2.5 and contribution to ambient PM2.5 concentration in 2021 are projected to be 30% and 41% of those without the campaign. With 60% substitution, average indoor PM2.5 concentrations in living rooms in winter are projected to be reduced from 209 (190 to 230) μg/m3 to 125 (99 to 150) μg/m3. The population-weighted PM2.5 concentrations can be reduced from 140 μg/m3 in 2014 to 78 μg/m3 or 61 μg/m3 in 2021 given that 60% or 100% substitution can be accomplished. Although the original focus of the campaign was to address ambient air quality, exposure reduction comes more from improved indoor air quality because ∼90% of daily exposure of the rural population is attributable to indoor air pollution. Women benefit more than men.


Sign in / Sign up

Export Citation Format

Share Document