scholarly journals Alterations of the Gut Microbiome and Metabolome in Patients with Proliferative Diabetic Retinopathy

Author(s):  
Ke Yao ◽  
Panpan Ye ◽  
Xueyou Zhang ◽  
Yufeng Xu ◽  
Jia Xu ◽  
...  

Abstract Background: Diabetic retinopathy (DR) has been reported to associate with gut microbiota alterations in murine models and thus “gut-retina-axis” has been proposed. However, the role of gut microbiome and the associated metabolism in DR patients still need to be elucidated. Results: Fecal samples from 45 patients with proliferative DR (PDR) and 90 matched diabetic patients (1:2 according to age, sex and duration of diabetes) without DR (NDR) were subjected to 16S rRNA gene sequencing and untargeted metabolomics. Significantly lower bacterial diversity was observed in PDR group than that in NDR group. Differential gut bacterial composition was found, with significant depletion of 22 families (e.g., Coriobacteriaceae, Veillonellaceae and Streptococcaceae) and enrichment of 2 families (Burkholderiaceae and Burkholderiales_unclassified) in PDR group as compared to NDR group. There were significantly different fecal metabolic features, which were enriched in metabolic pathways such as arachidonic acid and microbial metabolism, between the two groups. Among 36 co-abundance metabolite clusters, 11 were positively/negatively contributed to PDR using logistic regression analysis. Fifteen gut microbial families were significantly correlated with the 11 metabolite clusters. Furthermore, a fecal metabolites-based classifier was constructed to distinguish PDR patients from NDR patients accurately.Conclusions: PDR is associated with reduced diversity and altered composition of gut microbiota and specific microbe-metabolite interplay. Our findings help to better understand the disease pathogenesis and provide novel diagnostic biomarkers and therapeutic targets for PDR.

2021 ◽  
Vol 12 ◽  
Author(s):  
Panpan Ye ◽  
Xueyou Zhang ◽  
Yufeng Xu ◽  
Jia Xu ◽  
Xiaoxiao Song ◽  
...  

Diabetic retinopathy (DR) has been reported to associate with gut microbiota alterations in murine models and thus “gut-retina-axis” has been proposed. However, the role of gut microbiome and the associated metabolism in DR patients still need to be elucidated. In this study, we collected fecal samples from 45 patients with proliferative diabetic retinopathy (PDR) and 90 matched diabetic patients (1:2 according to age, sex, and duration of diabetes) without DR (NDR) and performed 16S rRNA gene sequencing and untargeted metabolomics. We observed significantly lower bacterial diversity in the PDR group than that in the NDR group. Differential gut bacterial composition was also found, with significant depletion of 22 families (e.g., Coriobacteriaceae, Veillonellaceae, and Streptococcaceae) and enrichment of two families (Burkholderiaceae and Burkholderiales_unclassified) in the PDR group as compared with the NDR group. There were significantly different fecal metabolic features, which were enriched in metabolic pathways such as arachidonic acid and microbial metabolism, between the two groups. Among 36 coabundance metabolite clusters, 11 were positively/negatively contributed to PDR using logistic regression analysis. Fifteen gut microbial families were significantly correlated with the 11 metabolite clusters. Furthermore, a fecal metabolite-based classifier was constructed to distinguish PDR patients from NDR patients accurately. In conclusion, PDR is associated with reduced diversity and altered composition of gut microbiota and specific microbe-metabolite interplay. Our findings help to better understand the disease pathogenesis and provide novel diagnostic and therapeutic targets for PDR.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Shenhai Gong ◽  
Yinglin Feng ◽  
Yunong Zeng ◽  
Huanrui Zhang ◽  
Meiping Pan ◽  
...  

Abstract Background Gut microbiota has been reported to be disrupted by cisplatin, as well as to modulate chemotherapy toxicity. However, the precise role of intestinal microbiota in the pathogenesis of cisplatin hepatotoxicity remains unknown. Methods We compared the composition and function of gut microbiota between mice treated with and without cisplatin using 16S rRNA gene sequencing and via metabolomic analysis. For understanding the causative relationship between gut dysbiosis and cisplatin hepatotoxicity, antibiotics were administered to deplete gut microbiota and faecal microbiota transplantation (FMT) was performed before cisplatin treatment. Results 16S rRNA gene sequencing and metabolomic analysis showed that cisplatin administration caused gut microbiota dysbiosis in mice. Gut microbiota ablation by antibiotic exposure protected against the hepatotoxicity induced by cisplatin. Interestingly, mice treated with antibiotics dampened the mitogen-activated protein kinase pathway activation and promoted nuclear factor erythroid 2-related factor 2 nuclear translocation, resulting in decreased levels of both inflammation and oxidative stress in the liver. FMT also confirmed the role of microbiota in individual susceptibility to cisplatin-induced hepatotoxicity. Conclusions This study elucidated the mechanism by which gut microbiota mediates cisplatin hepatotoxicity through enhanced inflammatory response and oxidative stress. This knowledge may help develop novel therapeutic approaches that involve targeting the composition and metabolites of microbiota.


Vaccines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1356
Author(s):  
Michele Tomasi ◽  
Mattia Dalsass ◽  
Francesco Beghini ◽  
Ilaria Zanella ◽  
Elena Caproni ◽  
...  

A large body of data both in animals and humans demonstrates that the gut microbiome plays a fundamental role in cancer immunity and in determining the efficacy of cancer immunotherapy. In this work, we have investigated whether and to what extent the gut microbiome can influence the antitumor activity of neo-epitope-based cancer vaccines in a BALB/c-CT26 cancer mouse model. Similarly to that observed in the C57BL/6-B16 model, Bifidobacterium administration per se has a beneficial effect on CT26 tumor inhibition. Furthermore, the combination of Bifidobacterium administration and vaccination resulted in a protection which was superior to vaccination alone and to Bifidobacterium administration alone, and correlated with an increase in the frequency of vaccine-specific T cells. The gut microbiome analysis by 16S rRNA gene sequencing and shotgun metagenomics showed that tumor challenge rapidly altered the microbiome population, with Muribaculaceae being enriched and Lachnospiraceae being reduced. Over time, the population of Muribaculaceae progressively reduced while the Lachnospiraceae population increased—a trend that appeared to be retarded by the oral administration of Bifidobacterium. Interestingly, in some Bacteroidales, Prevotella and Muribaculacee species we identified sequences highly homologous to immunogenic neo-epitopes of CT26 cells, supporting the possible role of “molecular mimicry” in anticancer immunity. Our data strengthen the importance of the microbiome in cancer immunity and suggests a microbiome-based strategy to potentiate neo-epitope-based cancer vaccines.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Parul Singh ◽  
Arun Rawat ◽  
Mariam Alwakeel ◽  
Elham Sharif ◽  
Souhaila Al Khodor

AbstractVitamin D deficiency affects approximately 80% of individuals in some countries and has been linked with gut dysbiosis and inflammation. While the benefits of vitamin D supplementation on the gut microbiota have been studied in patients with chronic diseases, its effects on the microbiota of otherwise healthy individuals is unclear. Moreover, whether effects on the microbiota can explain some of the marked inter-individual variation in responsiveness to vitamin D supplementation is unknown. Here, we administered vitamin D to 80 otherwise healthy vitamin D-deficient women, measuring serum 25(OH) D levels in blood and characterizing their gut microbiota pre- and post- supplementation using 16S rRNA gene sequencing. Vitamin D supplementation significantly increased gut microbial diversity. Specifically, the Bacteroidetes to Firmicutes ratio increased, along with the abundance of the health-promoting probiotic taxa Akkermansia and Bifidobacterium. Significant variations in the two-dominant genera, Bacteroides and Prevotella, indicated a variation in enterotypes following supplementation. Comparing supplementation responders and non-responders we found more pronounced changes in abundance of major phyla in responders, and a significant decrease in Bacteroides acidifaciens in non-responders. Altogether, our study highlights the positive impact of vitamin D supplementation on the gut microbiota and the potential for the microbial gut signature to affect vitamin D response.


2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
He Zhou ◽  
Xue Zhao ◽  
Lin Sun ◽  
Yujia Liu ◽  
You Lv ◽  
...  

The gut microbiota has been presumed to have a role in the pathogenesis of type 1 diabetes (T1D). Significant changes in the microbial composition of T1D patients have been reported in several case-control studies. This study is aimed at systematically reviewing the existing literature, which has investigated the alterations of the intestinal microbiome in T1D patients compared with healthy controls (HCs) using 16S ribosomal RNA-targeted sequencing. The databases of MEDLINE, EMBASE, Web of Science, and the Cochrane Library were searched until April 2019 for case-control studies comparing the composition of the intestinal microbiome in T1D patients and HCs based on 16S rRNA gene sequencing techniques. The Newcastle-Ottawa Scale was used to assess the methodological quality. Ten articles involving 260 patients with T1D and 276 HCs were included in this systematic review. The quality scores of all included studies were 6–8 points. In summary, a decreased microbiota diversity and a significantly distinct pattern of clustering with regard to β-diversity were observed in T1D patients when compared with HCs. At the phylum level, T1D was characterised by a reduced ratio of Firmicutes/Bacteroidetes in the structure of the gut community, although no consistent conclusion was reached. At the genus or species level, T1D patients had a reduced abundance of Clostridium and Prevotella compared with HCs, whereas Bacteroides and Ruminococcus were found to be more enriched in T1D patients. This systematic review identified that there is a close association between the gut microbiota and development of T1D. Moreover, gut dysbiosis might be involved in the pathogenesis of T1D, although the causative role of gut microbiota remains to be established. Further well-controlled prospective studies are needed to better understand the role of the intestinal microbiome in the pathogenesis of T1D, which may help explore novel microbiota-based strategies to prevent and treat T1D.


2020 ◽  
Author(s):  
Chunyan Wu ◽  
Qian Xu ◽  
Zhan Cao ◽  
Dengdeng Pan ◽  
Ying Zhu ◽  
...  

Abstract Background Coronavirus disease 2019 (COVID-19) has rapidly become a global pandemic, and little is known regarding the gut microbiota dynamics of the disease that often features a drastic and swift progression. Here we employed analyses of 16S rRNA gene sequencing and metatranscriptome to investigate the gut microbiome characteristics of a group of COVID-19 patients over the course of a probiotics-assisted therapy. Results The COVID-19 patients exhibited apparent microbiota alterations characterized by prominent compositional and functional shifts, which included taxonomic changes (e.g., increased relative abundance of Enterococcus and Rhodococcus, and decreased relative abundance of Faecalibacterium and Clostridium XlVa) and transcriptional changes (e.g., increased transcriptional activities of Escherichia coli and Klebsiella pneumoniae, virulence factors, and antibiotic resistance genes, and decreased activities of Faecalibacterium prausnitzii). Importantly, there were great interpersonal heterogeneity and intertimepoint fluctuations, as the most abundant or transcriptionally active taxa often greatly differed among individual patients and timepoints. Coincided with the resolution of respiratory symptoms, after the therapy some patients showed signs of recovery in the gut microbiome abnormalities. Associations were identified between gut and airway taxa and serum factors. Conclusion Our findings suggested that there is a lack of gut microbiota stability in COVID-19 patients and that measures are needed to ameliorate the gut microbiome perturbations in the patients to improve the prognosis. In addition, inclusion of probiotics is safe for treating COVID-19 patients and may improve their prognosis. Trial registration ISRCTN, ChiCTR2000029999. Registered 19 February 2020, http://www.chictr.org.cn/showprojen.aspx?proj=49717


2021 ◽  
Vol 12 ◽  
Author(s):  
Xin Wang ◽  
Wanyu Yi ◽  
Liting He ◽  
Shuaihantian Luo ◽  
Jiaqi Wang ◽  
...  

BackgroundIncreasing evidence suggests that the gut microbiome plays a role in the pathogenesis of allergy and autoimmunity. The association between abnormalities in the gut microbiota and chronic spontaneous urticaria (CSU) remains largely undefined.MethodsFecal samples were obtained from 39 patients with CSU and 40 healthy controls (HCs). 16S ribosomal RNA (rRNA) gene sequencing (39 patients with CSU and 40 HCs) and untargeted metabolomics (12 patients with CSU and 12 HCs) were performed to analyze the compositional and metabolic alterations of the gut microbiome in CSU patients and HCs.ResultsThe 16S rRNA gene sequencing results showed a significant difference in the β-diversity of the gut microbiota, presented as the Jaccard distance, between CSU patients and HCs. No significant differences were found in the α-diversity of the gut microbiota between patients and HCs. At the phylum level, the major bacteria in the gut microbiome of patients with CSU were Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria. At the genus level, Lactobacillus, Turicibacter, and Lachnobacterium were significantly increased and Phascolarctobacterium was decreased in patients with CSU. PICRUSt and correlation analysis indicated that Lactobacillus, Turicibacter, and Phascolarctobacterium were positively related to G protein-coupled receptors. Metabolomic analysis showed that α-mangostin and glycyrrhizic acid were upregulated and that 3-indolepropionic acid, xanthine, and isobutyric acid were downregulated in patients with CSU. Correlation analysis between the intestinal microbiota and metabolites suggested that there was a positive correlation between Lachnobacterium and α-mangostin.ConclusionsThis study suggests that disturbances in the gut microbiome composition and metabolites and their crosstalk or interaction may participate in the pathogenesis of CSU.


Life ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 254
Author(s):  
Ying Wang ◽  
Jianqing Zhu ◽  
Jie Fang ◽  
Li Shen ◽  
Shuojia Ma ◽  
...  

We characterized the gut microbial composition and relative abundance of gut bacteria in the larvae and adults of Pieris canidia by 16S rRNA gene sequencing. The gut microbiota structure was similar across the life stages and sexes. The comparative functional analysis on P. canidia bacterial communities with PICRUSt showed the enrichment of several pathways including those for energy metabolism, immune system, digestive system, xenobiotics biodegradation, transport, cell growth and death. The parameters often used as a proxy of insect fitness (development time, pupation rate, emergence rate, adult survival rate and weight of 5th instars larvae) showed a significant difference between treatment group and untreated group and point to potential fitness advantages with the gut microbiomes in P. canidia. These data provide an overall view of the bacterial community across the life stages and sexes in P. canidia.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Vanessa Palmas ◽  
Silvia Pisanu ◽  
Veronica Madau ◽  
Emanuela Casula ◽  
Andrea Deledda ◽  
...  

AbstractIn the present study, we characterized the distinctive signatures of the gut microbiota (GM) from overweight/obese patients (OB), and normal-weight controls (NW), both of Sardinian origin. Fecal bacterial composition of 46 OB patients (BMI = 36.6 ± 6.0; F/M = 40/6) was analyzed and compared to that of 46 NW subjects (BMI = 21.6 ± 2.1; F/M = 41/5), matched for sex, age and smoking status, by using 16S rRNA gene sequencing on MiSeq Illumina platform. The gut microbial community of OB patients exhibited a significant decrease in the relative abundance of several Bacteroidetes taxa (i.e. Flavobacteriaceae, Porphyromonadaceae, Sphingobacteriaceae, Flavobacterium, Rikenella spp., Pedobacter spp., Parabacteroides spp., Bacteroides spp.) when compared to NW; instead, several Firmicutes taxa were significantly increased in the same subjects (Lachnospiraceae, Gemellaceae, Paenibacillaceae, Streptococcaceae, Thermicanaceae, Gemella, Mitsuokella, Streptococcus, Acidaminococcus spp., Eubacterium spp., Ruminococcus spp., Megamonas spp., Streptococcus, Thermicanus, Megasphaera spp. and Veillonella spp.). Correlation analysis indicated that body fatness and waist circumference negatively correlated with Bacteroidetes taxa, while Firmicutes taxa positively correlated with body fat and negatively with muscle mass and/or physical activity level. Furthermore, the relative abundance of several bacterial taxa belonging to Enterobacteriaceae family, known to exhibit endotoxic activity, was increased in the OB group compared to NW. The results extend our knowledge on the GM profiles in Italian OB, identifying novel taxa linking obesity and intestine.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Francesco Durazzi ◽  
Claudia Sala ◽  
Gastone Castellani ◽  
Gerardo Manfreda ◽  
Daniel Remondini ◽  
...  

AbstractIn this paper we compared taxonomic results obtained by metataxonomics (16S rRNA gene sequencing) and metagenomics (whole shotgun metagenomic sequencing) to investigate their reliability for bacteria profiling, studying the chicken gut as a model system. The experimental conditions included two compartments of gastrointestinal tracts and two sampling times. We compared the relative abundance distributions obtained with the two sequencing strategies and then tested their capability to distinguish the experimental conditions. The results showed that 16S rRNA gene sequencing detects only part of the gut microbiota community revealed by shotgun sequencing. Specifically, when a sufficient number of reads is available, Shotgun sequencing has more power to identify less abundant taxa than 16S sequencing. Finally, we showed that the less abundant genera detected only by shotgun sequencing are biologically meaningful, being able to discriminate between the experimental conditions as much as the more abundant genera detected by both sequencing strategies.


Sign in / Sign up

Export Citation Format

Share Document