scholarly journals Preparation, characterization and application of fluorinated acrylate copolymer emulsion for the conservation of stone building heritages in Putuo Zongcheng Temple, China

Author(s):  
Jiangfang Chang ◽  
Qinghe Niu ◽  
Wei Wang

Abstract Recently, the stone building heritages in Putuo Zongcheng Temple are experiencing a certain degree of weathering damage, which mainly manifests in the blistering, fissuring, flaking and detachment of the carved balustrades of stone bridge, the footings of wall, the front paws and pedestals of stone lions. To prevent the deterioration of the stone building heritages, the fluorinated acrylate copolymer emulsion was successfully prepared with ethyl metrhacrylate, n-butyl acrylate and 2,2,3,4,4,4-hexafluorobutyl methacrylate as monomers. The structure and surface morphology characteristics of this copolymer were described the Fourier Transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM), respectively. The FTIR spectra confirms that the adopted monomers have been involved in during the copolymer polymerization process. The SEM images reveal that the surface of the prepared copolymer is obviously more dense, compact and smooth than the porous structure of stone building heritages. The ageing resistance of the copolymer was quantitatively studied by the ultraviolet aging test, the contact angle and imbibition spontaneous tests were adopted to estimate the wettability alteration of the copolymer emulsion for the stone samples. Results show that the mass loss rate of the prepared copolymer increases rapidly and then tends to be stable when irradiated by ultraviolet light. And the fluorinated copolymer with 16.65% HFMA content possesses the optimal ageing resistance and the superb hydrophobicity. The contact angles of the coated stone samples range from 91.90o to 119.80o, which are all larger than 18.80o-69.05o of the un-coated samples. Similarly, the spontaneous imbibition test also ensures that, both the maximum water absorption capacity and the imbibition equilibrium time of the samples treated by this copolymer emulsion are lesser. Considering the influence of water on rock weathering, the fluorinated copolymer emulsion coating is an potential method to avoid the degrading of stone building heritages, because it depresses the infiltration of water and then avoids or weakens the dissolution effect, salt crystallization, water absorption swelling and freeze-thaw weathering.

SPE Journal ◽  
2019 ◽  
Vol 24 (03) ◽  
pp. 1092-1107 ◽  
Author(s):  
M.. Tagavifar ◽  
M.. Balhoff ◽  
K.. Mohanty ◽  
G. A. Pope

Summary Surfactants induce spontaneous imbibition of water into oil-wet porous media by wettability alteration and interfacial-tension (IFT) reduction. Although the dependence of imbibition on wettability alteration is well-understood, the role of IFT is not as clear. This is partly because, at low IFT values, most water/oil/amphiphile(s) mixtures form emulsions and/or microemulsions, suggesting that the imbibition is accompanied by a phase change, which has been neglected or incorrectly accounted for in previous studies. In this paper, spontaneous displacement of oil from oil-wet porous media by microemulsion-forming surfactants is investigated through simulations and the results are compared with existing experimental data for low-permeability cores with different aspect ratios and permeabilities. Microemulsion viscosity and oil contact angles, with and without surfactant, were measured to better initialize and constrain the simulation model. Results show that with such processes, the imbibition rate and the oil recovery scale differently with core dimensions. Specifically, the rate of imbibition is faster in cores with larger diameter and height, but the recovery factor is smaller when the core aspect ratio deviates considerably from unity. With regard to the mechanism of water uptake, our results suggest, for the first time, that (i) microemulsion formation (i.e., fluid/fluid interface phenomenon) is fast and favored over the wettability alteration (i.e., rock-surface phenomenon) in short times; (ii) a complete wettability transition from an oil-wet to a mixed microemulsion-wet and surfactant-wet state always occurs at ultralow IFT; (iii) wettability alteration causes a more uniform imbibition profile along the core but creates a more diffused imbibition front; and (iv) total emulsification is a strong assumption and fails to describe the dynamics and the scaling of imbibition. Wettability alteration affects the imbibition dynamics locally by changing the composition path, and at a distance by changing the flow behavior. Simulations predict that even though water is not initially present, it forms inside the core. The implications of these results for optimizing the design of low-IFT imbibition are discussed.


2016 ◽  
Vol 7 (23) ◽  
pp. 3913-3922 ◽  
Author(s):  
Fangfang Yu ◽  
Liwei Cao ◽  
Zhaohui Meng ◽  
Naibo Lin ◽  
Xiang Yang Liu

Fluorinated acrylate and siloxane waterborne polyurethanes with crosslinked structure exhibit low water absorption, high water contact angles, and high mechanical/thermal properties.


2021 ◽  
Author(s):  
Xu-Guang Song ◽  
Ming-Wei Zhao ◽  
Cai-Li Dai ◽  
Xin-Ke Wang ◽  
Wen-Jiao Lv

AbstractThe ultra-low permeability reservoir is regarded as an important energy source for oil and gas resource development and is attracting more and more attention. In this work, the active silica nanofluids were prepared by modified active silica nanoparticles and surfactant BSSB-12. The dispersion stability tests showed that the hydraulic radius of nanofluids was 58.59 nm and the zeta potential was − 48.39 mV. The active nanofluids can simultaneously regulate liquid–liquid interface and solid–liquid interface. The nanofluids can reduce the oil/water interfacial tension (IFT) from 23.5 to 6.7 mN/m, and the oil/water/solid contact angle was altered from 42° to 145°. The spontaneous imbibition tests showed that the oil recovery of 0.1 wt% active nanofluids was 20.5% and 8.5% higher than that of 3 wt% NaCl solution and 0.1 wt% BSSB-12 solution. Finally, the effects of nanofluids on dynamic contact angle, dynamic interfacial tension and moduli were studied from the adsorption behavior of nanofluids at solid–liquid and liquid–liquid interface. The oil detaching and transporting are completed by synergistic effect of wettability alteration and interfacial tension reduction. The findings of this study can help in better understanding of active nanofluids for EOR in ultra-low permeability reservoirs.


Nanomaterials ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 706 ◽  
Author(s):  
Chaoqun Wu ◽  
Yudan Zhou ◽  
Haitao Wang ◽  
Jianhua Hu

Zwitterionic polymers are suitable for replacing poly(ethylene glycol) (PEG) polymers because of their better antifouling properties, but zwitterionic polymers have poor mechanical properties, strong water absorption, and their homopolymers should not be used directly. To solve these problems, a reversible-addition fragmentation chain transfer (RAFT) polymerization process was used to prepare copolymers comprised of zwitterionic side chains that were attached to an ITO glass substrate using spin-casting. The presence of 4-vinylpyridine (4VP) and zwitterion chains on these polymer-coated ITO surfaces was confirmed using 1H NMR, FTIR, and GPC analyses, with successful surface functionalization confirmed using water contact angle, X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM) studies. Changes in water contact angles and C/O ratios (XPS) analysis demonstrated that the functionalization of these polymers with β-propiolactone resulted in hydrophilic mixed 4VP/zwitterionic polymers. Protein adsorption and cell attachment assays were used to optimize the ratio of the zwitterionic component to maximize the antifouling properties of the polymer brush surface. This work demonstrated that the antifouling surface coatings could be readily prepared using a “P4VP-modified” method, that is, the functionality of P4VP to modify the prepared zwitterionic polymer. We believe these materials are likely to be useful for the preparation of biomaterials for biosensing and diagnostic applications.


2011 ◽  
Vol 64 (12) ◽  
pp. 2404-2409 ◽  
Author(s):  
A. Akbari ◽  
M. Homayoonfal ◽  
V. Jabbari

A composite nanofiltration membrane was developed by a poly(acrylic acid) in situ ultraviolet (UV) graft polymerization process using an ultrafiltration polysulfone membrane as a porous support, by a phase inversion method. SEM images showed that the PSf membranes had numerous finger-like pores. Atomic force microscopy (AFM) showed that the roughness of the surface was reduced by an increase in UV irradiation times. The rejections of sodium chloride and sodium sulfate were moderate and declined with the increase of concentration. We observed that by increasing UV irradiation time and nanofiltration pressure applied, retention of dyes was enhanced and in the most irradiated membrane (M-4 membrane) at 4 bars, color removal with a high rejection of about 99.80% was achieved. It was found that the separation efficiency of dyes in the mixture of salt and dyes decreased with the salt concentration due to a decrease in the Donnan effect. It was also found that by varying the pH, the membrane surface and the dyes' charges are changed, which meant that the membrane surface and dyes had different interactions at various pHs.


2020 ◽  
Vol 1015 ◽  
pp. 89-93
Author(s):  
Thitipong Wutisart

Paper made from water hyacinth which was modified by PLA solvent coating and the PLA content were varied for finding the most appropriate content. The SEM images of both surface and cross section were carried out for showing the interaction between the water hyacinth paper and PLA film. The water barrier properties of PLA content at 0.4 % (W/V) and 0.6 % (W/V) showed the hydrophobic properties of water hyacinth paper. The modified water hyacinth paper could resist water being indicated by water absorption which was over 90 minute/5µL in any PLA content.


Molecules ◽  
2020 ◽  
Vol 25 (14) ◽  
pp. 3236
Author(s):  
Peng Yin ◽  
Wen Zhou ◽  
Xin Zhang ◽  
Bin Guo ◽  
Panxin Li

In order to improve the mechanical properties and water resistance of thermoplastic starch (TPS), a novel reinforcement of dialdehyde lignocellulose (DLC) was prepared via the oxidation of lignocellulose (LC) using sodium periodate. Then, the DLC-reinforced TPS composites were prepared by an extrusion and injection process using glycerol as a plasticizer. The DLC and LC were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), and the effects of DLC content on the properties of the DLC/TPS composites were investigated via the evaluation of SEM images, mechanical properties, thermal stability, and contact angles. XRD showed that the crystallinity of the DLC decreased due to oxidation damage to the LC. SEM showed good dispersion of the DLC in the continuous TPS phase at low amounts of DLC, which related to good mechanical properties. The tensile strength of the DLC/TPS composite reached a maximum at a DLC content of 3 wt.%, while the elongation at break of the DLC/TPS composites increased with increasing DLC content. The DLC/TPS composites had better thermal stability than the neat TPS. As the DLC content increased, the water resistance first increased, then decreased. The highest tensile strength and elongation at break reached 5.26 MPa and 111.25%, respectively, and the highest contact angle was about 90.7°.


Sign in / Sign up

Export Citation Format

Share Document