scholarly journals Bacillus Subtilis Revives Conventional Antibiotics Against Staphylococcus Aureus Osteomyelitis

Author(s):  
Fan Zhang ◽  
Bowei Wang ◽  
Shiluan Liu ◽  
Yihuang Lin ◽  
Zixian Liu ◽  
...  

Abstract As treatment of Staphylococcus aureus osteomyelitis is often hindered by the development of antibiotic tolerance, novel antibacterial therapeutics are required. Here we found that the cell-free supernatant of Bacillus subtilis (B. subtilis CFS) killed planktonic and biofilm S. aureus, and increased S. aureus susceptibility to penicillin and gentamicin as well. Further study showed that B. subtilis CFS suppressed the expression of the genes involved in adhesive molecules (Cna and ClfA), virulence factor Hla, quorum sensing (argA, argB and RNAIII) and biofilm formation (Ica and sarA) in S. aureus. Additionally, our data showed that B. subtilis CFS changed the membrane components and increased membrane permeabilization of S. aureus. Finally, we demonstrated that B. subtilis CFS increased considerably the susceptibility of S. aureus to penicillin and effectively reduced S. aureus burdens in a mouse model of implant-associated osteomyelitis. These findings support that B. subtilis CFS may be a potential resistance-modifying agent against S. aureus osteomyelitis.

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Fan Zhang ◽  
Bowei Wang ◽  
Shiluan Liu ◽  
Yuhui Chen ◽  
Yihuang Lin ◽  
...  

AbstractAs treatment of Staphylococcus aureus (S. aureus) osteomyelitis is often hindered by the development of antibiotic tolerance, novel antibacterial therapeutics are required. Here we found that the cell-free supernatant of Bacillus subtilis (B. subtilis CFS) killed planktonic and biofilm S. aureus, and increased S. aureus susceptibility to penicillin and gentamicin as well. Further study showed that B. subtilis CFS suppressed the expression of the genes involved in adhesive molecules (Cna and ClfA), virulence factor Hla, quorum sensing (argA, argB and RNAIII) and biofilm formation (Ica and sarA) in S. aureus. Additionally, our data showed that B. subtilis CFS changed the membrane components and increased membrane permeabilization of S. aureus. Finally, we demonstrated that B. subtilis CFS increased considerably the susceptibility of S. aureus to penicillin and effectively reduced S. aureus burdens in a mouse model of implant-associated osteomyelitis. These findings support that B. subtilis CFS may be a potential resistance-modifying agent for β-lactam antibiotics against S. aureus.


2019 ◽  
Vol 102 (4) ◽  
pp. 1228-1234 ◽  
Author(s):  
Raid Al Akeel ◽  
Ayesha Mateen ◽  
Rabbani Syed

Abstract Background: Alanine-rich proteins/peptides (ARP), with bioactivity of up to 20 amino acid residues, can be observed by the body easily during gastrointestinal digestion. Objective: Populus trichocarpa extract’s capability to attenuate quorum sensing-regulated virulence and biofilm formation in Staphylococcus aureus is described. Methods: PT13, an ARP obtained from P. trichocarpa, was tested for its activity against S. aureus using the broth microdilution test; a crystal-violet biofilm assay was performed under a scanning electron microscope. The production of various virulence factors was estimated with PT13 treatment. Microarray gene expression profiling of PT13-treated S. aureus was conducted and compared with an untreated control. Exopolysaccharides (EPS) was estimated to observe the PT13 inhibition activity. Results: PT13 was antimicrobial toward S. aureus at different concentrations and showed a similar growth rate in the presence and absence of PT13 at concentrations ≤8 μg/mL. Biofilm production was interrupted even at low concentrations, and biofilm-related genes were down-regulated when exposed to PT13. The genes encoding cell adhesion and bacterial attachment protein were the major genes suppressed by PT13. In addition, hemolysins, clumping activity, and EPS production of S. aureus decreased after treatment in a concentration-dependent manner. Conclusions: A long-chain PT13 with effective actions that, even at low concentration levels, not only regulated the gene expression in the producer organism but also blocked the virulence gene expression in this Gram-positive human pathogen is described. Highlights: We identified a PT13 as a potential antivirulence agent that regulated production of bacterial virulence determinants (e.g., toxins, enzymes and biofilm), downwards and it may be a promising anti-virulence agent to be further developed as an anti-infective agent.


2017 ◽  
Vol 307 (4-5) ◽  
pp. 257-267 ◽  
Author(s):  
Ronghua Ma ◽  
Shuwan Qiu ◽  
Qiu Jiang ◽  
Haipeng Sun ◽  
Ting Xue ◽  
...  

Antibiotics ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 240 ◽  
Author(s):  
Adriana Vollaro ◽  
Anna Esposito ◽  
Eliana Pia Esposito ◽  
Raffaele Zarrilli ◽  
Annalisa Guaragna ◽  
...  

Pregnadiene-11-hydroxy-16α,17α-epoxy-3,20-dione-1 (PYED-1), a heterocyclic corticosteroid derivative of deflazacort, exhibits broad-spectrum antibacterial activity against Gram-negative and Gram-positive bacteria. Here, we investigated the effect of PYED-1 on the biofilms of Staphylococcus aureus, an etiological agent of biofilm-based chronic infections such as osteomyelitis, indwelling medical device infections, periodontitis, chronic wound infections, and endocarditis. PYED-1 caused a strong reduction in biofilm formation in a concentration dependent manner. Furthermore, it was also able to completely remove the preformed biofilm. Transcriptional analysis performed on the established biofilm revealed that PYED-1 downregulates the expression of genes related to quorum sensing (agrA, RNAIII, hld, psm, and sarA), surface proteins (clfB and fnbB), secreted toxins (hla, hlb, and lukD), and capsular polysaccharides (capC). The expression of genes that encode two main global regulators, sigB and saeR, was also significantly inhibited after treatment with PYED-1. In conclusion, PYED-1 not only effectively inhibited biofilm formation, but also eradicated preformed biofilms of S. aureus, modulating the expression of genes related to quorum sensing, surface and secreted proteins, and capsular polysaccharides. These results indicated that PYED-1 may have great potential as an effective antibiofilm agent to prevent S. aureus biofilm-associated infections.


Biofouling ◽  
2016 ◽  
Vol 32 (10) ◽  
pp. 1171-1183 ◽  
Author(s):  
Kannan Rama Devi ◽  
Ramanathan Srinivasan ◽  
Arunachalam Kannappan ◽  
Sivasubramanian Santhakumari ◽  
Murugan Bhuvaneswari ◽  
...  

2014 ◽  
Vol 197 (3) ◽  
pp. 592-602 ◽  
Author(s):  
Shira Omer Bendori ◽  
Shaul Pollak ◽  
Dorit Hizi ◽  
Avigdor Eldar

The genome ofBacillus subtilis168 encodes eightrap-phrquorum-sensing pairs. Rap proteins of all characterized Rap-Phr pairs inhibit the function of one or several important response regulators: ComA, Spo0F, or DegU. This inhibition is relieved upon binding of the peptide encoded by the cognatephrgene.Bacillus subtilisstrain NCIB3610, the biofilm-proficient ancestor of strain 168, encodes, in addition, therapP-phrPpair on the plasmid pBS32. RapP was shown to dephosphorylate Spo0F and to regulate biofilm formation, but unlike other Rap-Phr pairs, RapP does not interact with PhrP. In this work we extend the analysis of the RapP pathway by reexamining its transcriptional regulation, its effect on downstream targets, and its interaction with PhrP. At the transcriptional level, we show thatrapPandphrPregulation is similar to that of otherrap-phrpairs. We further find that RapP has an Spo0F-independent negative effect on biofilm-related genes, which is mediated by the response regulator ComA. Finally, we find that the insensitivity of RapP to PhrP is due to a substitution of a highly conserved residue in the peptide binding domain of therapPallele of strain NCIB3610. Reversing this substitution to the consensus amino acid restores the PhrP dependence of RapP activity and eliminates the effects of therapP-phrPlocus on ComA activity and biofilm formation. Taken together, our results suggest that RapP strongly represses biofilm formation through multiple targets and that PhrP does not counteract RapP due to a rare mutation inrapP.


2012 ◽  
Vol 60 (2) ◽  
pp. 189-197 ◽  
Author(s):  
Osman Tel ◽  
Özkan Aslantaş ◽  
Oktay Keskin ◽  
Ebru Yilmaz ◽  
Cemil Demir

In this study,Staphylococcus aureusstrains (n = 110) isolated from seven ewe flocks in Sanliurfa, Turkey were screened for antibiotic resistance and biofilmforming ability as well as for genes associated with antibiotic resistance and biofilm-forming ability. All isolates were found to be susceptible to oxacillin, gentamicin, clindamycin, cefoxitin, tetracycline, vancomycin, amoxicillin-clavulanic acid, ciprofloxacin and sulphamethoxazole-trimethoprim. The percent proportions of strains resistant to penicillin G, ampicillin and erythromycin were 27.2% (n = 30), 25.4% (n = 28) and 6.3% (n = 7), respectively. Regarding the antibiotic resistance genes, 32 (29%) isolates carried theblaZ and 8 (7.2%) theermC gene. Other resistance genes were not detected in the isolates. All isolates showed biofilm-forming ability on Congo red agar (CRA), while 108 (98.18%) and 101 (91.81%) of them were identified as biofilm producers by the use of standard tube (ST) and microplate (MP) methods, respectively. All isolates carried theicaA andicaD genes but none of them harboured thebapgene. The results demonstrated thatS. aureusisolates from gangrenous mastitis were mainly resistant to penicillins (which are susceptible to the staphylococcal beta-lactamase enzyme), and less frequently to erythromycin. Furthermore, all of theS. aureusisolates produced biofilm which was considered a potential virulence factor in the pathogenesis of staphylococcal mastitis.


2003 ◽  
Vol 47 (6) ◽  
pp. 1979-1983 ◽  
Author(s):  
Andrea Giacometti ◽  
Oscar Cirioni ◽  
Yael Gov ◽  
Roberto Ghiselli ◽  
Maria Simona Del Prete ◽  
...  

ABSTRACT Staphylococcus aureus is a prevalent cause of bacterial infections associated with indwelling medical devices. RNA III inhibiting peptide (RIP) is known to inhibit S. aureus pathogenesis by disrupting quorum-sensing mechanisms. RIP was tested in the present study for its ability to inhibit S. aureus biofilm formation in a rat Dacron graft model. The activity of RIP was synergistic with those of antibiotics for the complete prevention of drug-resistant S. aureus infections.


Sign in / Sign up

Export Citation Format

Share Document