An Alanine-Rich Peptide Attenuates Quorum Sensing-Regulated Virulence and Biofilm Formation in Staphylococcus aureus

2019 ◽  
Vol 102 (4) ◽  
pp. 1228-1234 ◽  
Author(s):  
Raid Al Akeel ◽  
Ayesha Mateen ◽  
Rabbani Syed

Abstract Background: Alanine-rich proteins/peptides (ARP), with bioactivity of up to 20 amino acid residues, can be observed by the body easily during gastrointestinal digestion. Objective: Populus trichocarpa extract’s capability to attenuate quorum sensing-regulated virulence and biofilm formation in Staphylococcus aureus is described. Methods: PT13, an ARP obtained from P. trichocarpa, was tested for its activity against S. aureus using the broth microdilution test; a crystal-violet biofilm assay was performed under a scanning electron microscope. The production of various virulence factors was estimated with PT13 treatment. Microarray gene expression profiling of PT13-treated S. aureus was conducted and compared with an untreated control. Exopolysaccharides (EPS) was estimated to observe the PT13 inhibition activity. Results: PT13 was antimicrobial toward S. aureus at different concentrations and showed a similar growth rate in the presence and absence of PT13 at concentrations ≤8 μg/mL. Biofilm production was interrupted even at low concentrations, and biofilm-related genes were down-regulated when exposed to PT13. The genes encoding cell adhesion and bacterial attachment protein were the major genes suppressed by PT13. In addition, hemolysins, clumping activity, and EPS production of S. aureus decreased after treatment in a concentration-dependent manner. Conclusions: A long-chain PT13 with effective actions that, even at low concentration levels, not only regulated the gene expression in the producer organism but also blocked the virulence gene expression in this Gram-positive human pathogen is described. Highlights: We identified a PT13 as a potential antivirulence agent that regulated production of bacterial virulence determinants (e.g., toxins, enzymes and biofilm), downwards and it may be a promising anti-virulence agent to be further developed as an anti-infective agent.

Antibiotics ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 240 ◽  
Author(s):  
Adriana Vollaro ◽  
Anna Esposito ◽  
Eliana Pia Esposito ◽  
Raffaele Zarrilli ◽  
Annalisa Guaragna ◽  
...  

Pregnadiene-11-hydroxy-16α,17α-epoxy-3,20-dione-1 (PYED-1), a heterocyclic corticosteroid derivative of deflazacort, exhibits broad-spectrum antibacterial activity against Gram-negative and Gram-positive bacteria. Here, we investigated the effect of PYED-1 on the biofilms of Staphylococcus aureus, an etiological agent of biofilm-based chronic infections such as osteomyelitis, indwelling medical device infections, periodontitis, chronic wound infections, and endocarditis. PYED-1 caused a strong reduction in biofilm formation in a concentration dependent manner. Furthermore, it was also able to completely remove the preformed biofilm. Transcriptional analysis performed on the established biofilm revealed that PYED-1 downregulates the expression of genes related to quorum sensing (agrA, RNAIII, hld, psm, and sarA), surface proteins (clfB and fnbB), secreted toxins (hla, hlb, and lukD), and capsular polysaccharides (capC). The expression of genes that encode two main global regulators, sigB and saeR, was also significantly inhibited after treatment with PYED-1. In conclusion, PYED-1 not only effectively inhibited biofilm formation, but also eradicated preformed biofilms of S. aureus, modulating the expression of genes related to quorum sensing, surface and secreted proteins, and capsular polysaccharides. These results indicated that PYED-1 may have great potential as an effective antibiofilm agent to prevent S. aureus biofilm-associated infections.


2007 ◽  
Vol 362 (1483) ◽  
pp. 1165-1183 ◽  
Author(s):  
Anne M.L Barnard ◽  
Steven D Bowden ◽  
Tom Burr ◽  
Sarah J Coulthurst ◽  
Rita E Monson ◽  
...  

Quorum sensing describes the ability of bacteria to sense their population density and respond by modulating gene expression. In the plant soft-rotting bacteria, such as Erwinia , an arsenal of plant cell wall-degrading enzymes is produced in a cell density-dependent manner, which causes maceration of plant tissue. However, quorum sensing is central not only to controlling the production of such destructive enzymes, but also to the control of a number of other virulence determinants and secondary metabolites. Erwinia synthesizes both N -acylhomoserine lactone (AHL) and autoinducer-2 types of quorum sensing signal, which both play a role in regulating gene expression in the phytopathogen. We review the models for AHL-based regulation of carbapenem antibiotic production in Erwinia . We also discuss the importance of quorum sensing in the production and secretion of virulence determinants by Erwinia , and its interplay with other regulatory systems.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Riccardo Provenzani ◽  
Paola San-Martin-Galindo ◽  
Ghada Hassan ◽  
Ashenafi Legehar ◽  
Aleksi Kallio ◽  
...  

AbstractBiofilms are multicellular communities of microorganisms that generally attach to surfaces in a self-produced matrix. Unlike planktonic cells, biofilms can withstand conventional antibiotics, causing significant challenges in the healthcare system. Currently, new chemical entities are urgently needed to develop novel anti-biofilm agents. In this study, we designed and synthesized a set of 2,4,5,6-tetrasubstituted pyrimidines and assessed their antibacterial activity against planktonic cells and biofilms formed by Staphylococcus aureus. Compounds 9e, 10d, and 10e displayed potent activity for inhibiting the onset of biofilm formation as well as for killing pre-formed biofilms of S. aureus ATCC 25923 and Newman strains, with half-maximal inhibitory concentration (IC50) values ranging from 11.6 to 62.0 µM. These pyrimidines, at 100 µM, not only decreased the number of viable bacteria within the pre-formed biofilm by 2–3 log10 but also reduced the amount of total biomass by 30–50%. Furthermore, these compounds were effective against planktonic cells with minimum inhibitory concentration (MIC) values lower than 60 µM for both staphylococcal strains. Compound 10d inhibited the growth of S. aureus ATCC 25923 in a concentration-dependent manner and displayed a bactericidal anti-staphylococcal activity. Taken together, our study highlights the value of multisubstituted pyrimidines to develop novel anti-biofilm agents.


2006 ◽  
Vol 74 (2) ◽  
pp. 910-919 ◽  
Author(s):  
Saara Qazi ◽  
Barry Middleton ◽  
Siti Hanna Muharram ◽  
Alan Cockayne ◽  
Philip Hill ◽  
...  

ABSTRACT Many gram-negative bacteria employ N-acylhomoserine lactone (AHL)-mediated quorum sensing to control virulence. To determine whether gram-positive bacteria such as Staphylococcus aureus respond to AHLs, we used a growth-dependent lux reporter fusion. Exposure of S. aureus to different AHLs revealed that 3-oxo-substituted AHLs with C10 to C14 acyl chains inhibited light output and growth in a concentration-dependent manner, while short-chain AHLs had no effect. N-(3-Oxododecanoyl)-l-homoserine lactone (3-oxo-C12-HSL) inhibited the production of exotoxins and cell wall fibronectin-binding proteins but enhanced protein A expression. Since these processes are reciprocally regulated via the S. aureus agr quorum-sensing system, which in turn, is regulated via sar, we examined the effect of AHLs on sarA and agr. At sub-growth-inhibitory concentrations of 3-oxo-C12-HSL, both sarA expression and agr expression were inhibited, indicating that the action of 3-oxo-C12-HSL is mediated at least in part through antagonism of quorum sensing in S. aureus. Spent culture supernatants from Pseudomonas aeruginosa, which produces both 3-oxo-C12-HSL and N-butanoyl-homoserine lactone (C4-HSL), also inhibited agr expression, although C4-HSL itself was inactive in this assay. Since quorum sensing in S. aureus depends on the activities of membrane-associated proteins, such as AgrB, AgrC, and AgrD, we investigated whether AHLs perturbed S. aureus membrane functionality by determining their influence on the membrane dipole potential. From the binding curves obtained, a dissociation constant of 7 μM was obtained for 3-oxo-C12-HSL, indicating the presence of a specific saturable receptor, whereas no binding was observed for C4-HSL. These data demonstrate that long-chain 3-oxo-substituted AHLs, such as 3-oxo-C12-HSL, are capable of interacting with the S. aureus cytoplasmic membrane in a saturable, specific manner and at sub-growth-inhibitory concentrations, down-regulating exotoxin production and both sarA and agr expression.


Antibiotics ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 403 ◽  
Author(s):  
Lan Hoang ◽  
František Beneš ◽  
Marie Fenclová ◽  
Olga Kronusová ◽  
Viviana Švarcová ◽  
...  

The inhibition and eradication of oral biofilms is increasingly focused on the use of plant extracts as mouthwashes and toothpastes adjuvants. Here, we report on the chemical composition and the antibiofilm activity of 15 methanolic extracts of Iris species against both mono-(Pseudomonas aeruginosa, Staphylococcus aureus) and multi-species oral biofilms (Streptococcus gordonii, Veillonella parvula, Fusobacterium nucleatum subsp. nucleatum, and Actinomyces naeslundii). The phytochemical profiles of Iris pallida s.l., Iris versicolor L., Iris lactea Pall., Iris carthaliniae Fomin, and Iris germanica were determined by ultra-high performance liquid chromatography-high-resolution tandem mass spectroscopy (UHPLC-HRMS/MS) analysis, and a total of 180 compounds were identified among Iris species with (iso)flavonoid dominancy. I. pallida, I. versicolor, and I. germanica inhibited both the quorum sensing and adhesion during biofilm formation in a concentration-dependent manner. However, the extracts were less active against maturated biofilms. Of the five tested species, Iris pallida s.l. was the most effective at both inhibiting biofilm formation and disrupting existing biofilms, and the leaf extract exhibited the strongest inhibitory effect compared to the root and rhizome extracts. The cytotoxicity of the extracts was excluded in human fibroblasts. The inhibition of bacterial adhesion significantly correlated with myristic acid content, and quorum sensing inhibition correlated with the 7-β-hydroxystigmast-4-en-3-one content. These findings could be useful for establishing an effective tool for the control of oral biofilms and thus dental diseases.


Antibiotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 430
Author(s):  
Klauss E. Chaverra Daza ◽  
Edelberto Silva Gómez ◽  
Bárbara D. Moreno Murillo ◽  
Humberto Mayorga Wandurraga

Resistance mechanisms occur in almost all clinical bacterial isolates and represent one of the most worrisome health problems worldwide. Bacteria can form biofilms and communicate through quorum sensing (QS), which allow them to develop resistance against conventional antibiotics. Thus, new therapeutic candidates are sought. We focus on alkylglycerols (AKGs) because of their recently discovered quorum sensing inhibition (QSI) ability and antibiofilm potential. Fifteen natural enantiopure AKGs were tested to determine their effect on the biofilm formation of other clinical bacterial isolates, two reference strains and their QSI was determined using Chromobacterium violaceum ATCC 12472. The highest biofilm inhibition rates (%) and minimum QS inhibitory concentration were determined by a microtiter plate assay and ciprofloxacin was used as the standard antibiotic. At subinhibitory concentrations, each AKG reduced biofilm formation in a concentration-dependent manner against seven bacterial isolates, with values up to 97.2%. Each AKG displayed QSI at different levels of ability without affecting the growth of C. violaceum. AKG (2S)-3-O-(cis-13’-docosenyl)-1,2-propanediol was the best QS inhibitor (20 μM), while (2S)-3-O-(cis-9’-hexadecenyl)-1,2-propanediol was the least effective (795 μM). The results showed for the first time the QSI activity of this natural AKG series and suggest that AKGs could be promising candidates for further studies on preventing antimicrobial resistance.


Nutrients ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 123
Author(s):  
Natalia K. Kordulewska ◽  
Justyna Topa ◽  
Małgorzata Tańska ◽  
Anna Cieślińska ◽  
Ewa Fiedorowicz ◽  
...  

Lipopolysaccharydes (LPS) are responsible for the intestinal inflammatory reaction, as they may disrupt tight junctions and induce cytokines (CKs) secretion. Osthole has a wide spectrum of pharmacological effects, thus its anti-inflammatory potential in the LPS-treated Caco-2 cell line as well as in Caco-2/THP-1 and Caco-2/macrophages co-cultures was investigated. In brief, Caco-2 cells and co-cultures were incubated with LPS to induce an inflammatory reaction, after which osthole (150–450 ng/mL) was applied to reduce this effect. After 24 h, the level of secreted CKs and changes in gene expression were examined. LPS significantly increased the levels of IL-1β, -6, -8, and TNF-α, while osthole reduced this effect in a concentration-dependent manner, with the most significant decrease when a 450 ng/mL dose was applied (p < 0.0001). A similar trend was observed in changes in gene expression, with the significant osthole efficiency at a concentration of 450 ng/μL for IL1R1 and COX-2 (p < 0.01) and 300 ng/μL for NF-κB (p < 0.001). Osthole increased Caco-2 monolayer permeability, thus if it would ever be considered as a potential drug for minimizing intestinal inflammatory symptoms, its safety should be confirmed in extended in vitro and in vivo studies.


PLoS ONE ◽  
2016 ◽  
Vol 11 (12) ◽  
pp. e0168305 ◽  
Author(s):  
Mara Baldry ◽  
Anita Nielsen ◽  
Martin S. Bojer ◽  
Yu Zhao ◽  
Cathrine Friberg ◽  
...  

1993 ◽  
Vol 264 (5) ◽  
pp. L465-L474 ◽  
Author(s):  
M. J. Acarregui ◽  
J. M. Snyder ◽  
C. R. Mendelson

Previously, it was found that lung explants from mid-trimester human abortuses differentiate spontaneously in organ culture in serum-free defined medium in an atmosphere of 95% air-5% CO2. Dibutyryl adenosine 3',5'-cyclic monophosphate (DBcAMP) treatment of human fetal lung in culture increases the rate of morphological differentiation and enhances expression of the surfactant protein A (SP-A) gene. To begin to define the factors responsible for this accelerated in vitro differentiation, we analyzed the effects of atmospheric oxygen on the morphological and biochemical development of human fetal lung in culture and on responsiveness of the cultured tissue to DBcAMP. We found that when lung explants were maintained in an atmosphere containing 1% oxygen they failed to differentiate spontaneously and no induction of SP-A gene expression was apparent. Furthermore, at 1% oxygen, DBcAMP had no effect to stimulate morphological differentiation or SP-A gene expression. When lung tissues that had been maintained for 5 days in 1% oxygen were transferred to an environment containing 20% oxygen, there was rapid morphological development and induction of SP-A gene expression. The effects on morphological development were manifest within 24 h of transfer to the 20% oxygen environment; within 72 h, a marked stimulatory effect of DBcAMP on SP-A gene expression also was observed. Our findings further suggest that the effects of oxygen on the levels of SP-A and SP-A mRNA are concentration dependent. Interestingly, the inductive effects of DBcAMP on SP-A gene expression were apparent only at oxygen concentrations > or = 10%. Morphological differentiation of the cultured human fetal lung tissue also was influenced by oxygen in a concentration-dependent manner. These findings suggest that oxygen plays an important permissive role in the spontaneous differentiation of human fetal lung in vitro.


Sign in / Sign up

Export Citation Format

Share Document