scholarly journals Aldehyde Dehydrogenase 1 Isoforms ALDH1A1 and ALDH1A3 are Essential for Myogenic Differentiation

Author(s):  
Laura Rihani ◽  
Sophie Franzmeier ◽  
Wei Wu ◽  
Jürgen Schlegel

Abstract Background Satellite cells (SC) constitute the stem cell population of skeletal muscle tissue and are determinants for myogenesis. Aldehyde Dehydrogenase 1 (ALDH1) enzymatic activity correlates with myogenic properties of SCs and, recently, we could show co-localization of its isoforms ALDH1A1 and ALDH1A3 in SCs of human skeletal muscle. ALDH1 is not only the pacemaker enzyme in retinoic acid signaling and differentiation, but also protecting cell maintenance against oxidative stress products. However, the molecular mechanism of ALDH1 in SC activation and regulation of myogenesis has not yet been characterized. In regard of ALDH1A1 and ALDH1A1 expression in myogenesis human RH30 and murine C2C12 myoblast cell lines were investigated using Western Blot, Immunofluorescence and Aldefluor Assay. Results Here, we show, that isoforms ALDH1A1 and ALDH1A3 are pivotal factors in the process of myogenic differentiation, since ALDH1A1 knock-out and ALDH1A3 knock-out, respectively, impaired differentiation potential. Recombinant re-expression of ALDH1A1 and ALDH1A3, respectively, in corresponding ALDH1-isoform knock-out cells recovered their differentiation potential. Most interestingly, the chemical inhibition of enzymatic activity by disulfiram leads to ALDH1A1 and ALDH1A3 protein upregulation and subsequent myogenic differentiation. Conclusion Our findings indicate that ALDH1A1 and ALDH1A3 proteins are important for myogenic differentiation and, therefore, seem to be essential activators and regulators of SCs.

2020 ◽  
Author(s):  
Laura Rihani ◽  
Sophie Franzmeier ◽  
Wei Wu ◽  
Jürgen Schlegel

Abstract Background Satellite cells (SC) constitute the stem cell population of skeletal muscle tissue and are determinants for myogenesis. Aldehyde Dehydrogenase 1 (ALDH1) enzymatic activity correlates with myogenic properties of SCs and, recently, we could show co-localization of its isoforms ALDH1A1 and ALDH1A3 in SCs of human skeletal muscle. ALDH1 is not only the pacemaker enzyme in retinoic acid signaling and differentiation, but also protecting cell maintenance against oxidative stress products. However, the molecular mechanism of ALDH1 in SC activation and regulation of myogenesis has not yet been characterized. Method Human RH30 and murine C2C12 myoblast cell lines were investigated in regard of ALDH1A1 and ALDH1A1 expression in myogenesis using Western Blot, Immunofluorescence and Aldefluor Assay. Results Here, we show, that isoforms ALDH1A1 and ALDH1A3 are pivotal factors in the process of myogenic differentiation, since ALDH1A1 knock-out and ALDH1A3 knock-out, respectively, impaired differentiation potential. Recombinant re-expression of ALDH1A1 and ALDH1A3, respectively, in corresponding ALDH1-isoform knock-out cells recovered their differentiation potential. Most interestingly, the chemical inhibition of enzymatic activity by disulfiram leads to ALDH1A1 and ALDH1A3 protein upregulation and subsequent myogenic differentiation. Conclusion Our findings indicate that ALDH1A1 and ALDH1A3 proteins are important for myogenic differentiation and, therefore, seem to be essential activators and regulators of SCs.


2020 ◽  
Vol 178 (1) ◽  
pp. 189-200
Author(s):  
Jiongjie Jing ◽  
Yong Pu ◽  
Almudena Veiga-Lopez ◽  
Lihua Lyu

Abstract Bisphenols are endocrine disrupting chemicals to which humans are ubiquitously exposed to. Prenatal bisphenol A exposure can lead to insulin resistance. However, the metabolic effects of other emerging bisphenols, such as bisphenol S (BPS) and bisphenol F (BPF), are less understood. Because the skeletal muscle is the largest of the insulin target tissues, the goal of this study was to evaluate the effects of 2 emerging bisphenols (BPS and BPF) on cytotoxicity, proliferation, myogenic differentiation, and insulin responsiveness in skeletal muscle cells. We tested this using a dose-response approach in C2C12 mouse and L6 rat myoblast cell lines. The results showed that C2C12 mouse myoblasts were more susceptible to bisphenols compared with L6 rat myoblasts. In both cell lines, bisphenol A was more cytotoxic, followed by BPF and BPS. C2C12 myoblast proliferation was higher upon BPF exposure at the 10−4 M dose and the fusion index was increased after exposure to either BPF or BPS at doses over 10−10 M. Exposure to BPS and BPF also reduced baseline expression of p-AKT (Thr) and p-GSK-3β, but not downstream effectors such as mTOR and glucose transporter-4. In conclusion, at noncytotoxic doses, BPS and BPF can alter myoblast cell proliferation, differentiation, and partially modulate early effectors of the insulin receptor signaling pathway. However, BPS or BPF short-term exposure evaluated here does not result in impaired insulin responsiveness.


2016 ◽  
Vol 9 ◽  
pp. NMI.S27481 ◽  
Author(s):  
Amritpal S. Bhullar ◽  
Charles T. Putman ◽  
Vera C. Mazurak

Skeletal muscle loss is associated with aging as well as pathological conditions. Satellite cells (SCs) play an important role in muscle regeneration. Omega-3 fatty acids are widely studied in a variety of muscle wasting diseases; however, little is known about their impact on skeletal muscle regeneration. The aim of this review is to evaluate studies examining the effect of omega-3 fatty acids, α-linolenic acid, eicosapentaenoic acid, and docosahexaenoic acid on the regulation of SC proliferation and differentiation. This review highlights mechanisms by which omega-3 fatty acids may modulate the myogenic program of the stem cell population within skeletal muscles and identifies considerations for future studies. It is proposed that minimally three myogenic transcriptional regulatory factors, paired box 7 (Pax7), myogenic differentiation 1 protein, and myogenin, should be measured to confirm the stage of SCs within the myogenic program affected by omega-3 fatty acids.


2020 ◽  
Author(s):  
Xiaomei Lu ◽  
Bingsheng Liang ◽  
Shuaijie Li ◽  
Zhi Chen ◽  
Wenkai Chang

Abstract Background HOXA9 (Homeobox A9), whose expression is promoted by MLL1 (Mixed Lineage Leukemia 1) and WDR5 (WD-40 repeat protein 5), is a homeodomain-containing transcription factor which plays an essential role in regulating stem cell activity. HOXA9 inhibits regeneration of skeletal muscle and delays the recovery after muscle wound in aged mice, but is little known in denervated/reinnervated muscles. Methods we performed detailed time-process expression analysis on HOXA9 and its promotors, MLL1 and WDR5, in the rat gastrocnemius muscle after three types of sciatic nerve surgeries: nerve transection (denervation); end-to-end repairing (repairing); and the sham operation. Then the specific mechanisms of Hoxa9 were detected in vitro through primary satellite cells transfected respectively by pIRES2-DsRed2 empty plasmids, pIRES2-DsRed2-HOXA9 plasmids, pPLK/ GFP -Puro empty plasmids, and pPLK/GFP-Puro- HOXA9 shRNA plasmids. Results We found that HOXA9 expression was synchronous with the severity of muscle atrophy, as well as the upregulation of MLL1 and WDR5 associated with the denervation state to some extent. Indeed, experiments with primary satellite cells revealed that HOXA9 inhibited myogenic differentiation, but not destroy the differentiation potential, influenced the best-known atrophic pathways, and promoted apoptosis. Conclusion HOXA9 may play a pro-atrophic role in denervated muscle atrophy.


2021 ◽  
Vol 12 (12) ◽  
Author(s):  
Yanjie Tan ◽  
Yi Jin ◽  
Pengxiang Zhao ◽  
Jian Wu ◽  
Zhuqing Ren

AbstractLipid droplet (LD), a multi-functional organelle, is found in most eukaryotic cells. LDs participate in the regulation of many cellular processes including proliferation, stress, and apoptosis. Previous studies showed the athlete’s paradox that trained athletes accumulate LDs in their skeletal muscle. However, the impact of LDs on skeletal muscle and myogenesis is not clear. We discovered that C2C12 myoblast cells containing more LDs formed more multinucleated muscle fibers. We also discovered that LDs promoted cell migration and fusion by promoting actin-filaments remodeling. Mechanistically, two LD-proteins, Acyl-CoA synthetase long chain family member 3 (ACSL3) and lysophosphatidylcholine acyltransferase 1 (LPCAT1), medicated the recruitment of actinin proteins which contributed to actin-filaments formation on the surface of LDs. During remodeling, the actinin proteins on LDs surface translocated to actin-filaments via ARF1/COPI vesicles. Our study demonstrate LDs contribute to cell differentiation, which lead to new insight into the LD function.


2020 ◽  
Vol 318 (6) ◽  
pp. C1154-C1165
Author(s):  
Xiaomei Lu ◽  
Bingsheng Liang ◽  
Shuaijie Li ◽  
Zhi Chen ◽  
Wenkai Chang

Homeobox A9 (HOXA9), the expression of which is promoted by mixed lineage leukemia 1 (MLL1) and WD-40 repeat protein 5 (WDR5), is a homeodomain-containing transcription factor that plays an essential role in regulating stem cell activity. HOXA9 has been found to inhibit skeletal muscle regeneration and delay recovery after muscle wounding in aged mice, but little is known about its role in denervated/reinnervated muscles. We performed detailed time-dependent expression analyses of HOXA9 and its promoters, MLL1 and WDR5, in rat gastrocnemius muscles after the following three types of sciatic nerve surgeries: nerve transection (denervation), end-to-end repair (repair), and sham operation (sham). Then, the specific mechanisms of HOXA9 were detected in vitro by transfecting primary satellite cells with empty pIRES2-DsRed2, pIRES2-DsRed2-HOXA9, empty pPLK/GFP-Puro, and pPLK/GFP-Puro-HOXA9 small hairpin RNA (shRNA) plasmids. We found, for the first time, that HOXA9 protein expression simultaneously increased with increasing denervated muscle atrophy severity and that upregulated MLL1 and WDR5 expression was partly associated with denervation. Indeed, in vitro experiments revealed that HOXA9 inhibited myogenic differentiation, affected the best known atrophic signaling pathways, and promoted apoptosis but did not eliminate the differentiation potential of primary satellite cells. HOXA9 may promote denervated muscle atrophy by regulating the activity of satellite cells.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Xin Zhang ◽  
Wenjuan Sun ◽  
Linjuan He ◽  
Liqi Wang ◽  
Kai Qiu ◽  
...  

Abstract Background Skeletal muscle is a complex and heterogeneous tissue accounting for approximately 40% of body weight. Excessive ectopic lipid accumulation in the muscle fascicle would undermine the integrity of skeletal muscle in humans but endow muscle with marbling-related characteristics in farm animals. Therefore, the balance of myogenesis and adipogenesis is of great significance for skeletal muscle homeostasis. Significant DNA methylation occurs during myogenesis and adipogenesis; however, DNA methylation pattern of myogenic and adipogenic precursors derived from skeletal muscle remains unknown yet. Methods In this study, reduced representation bisulfite sequencing was performed to analyze genome-wide DNA methylation of adipogenic and myogenic precursors derived from the skeletal muscle of neonatal pigs. Integrated analysis of DNA methylation and transcription profiles was further conducted. Based on the results of pathway enrichment analysis, myogenic precursors were transfected with CACNA2D2-overexpression plasmids to explore the function of CACNA2D2 in myogenic differentiation. Results As a result, 11,361 differentially methylated regions mainly located in intergenic region and introns were identified. Furthermore, 153 genes with different DNA methylation and gene expression level between adipogenic and myogenic precursors were characterized. Subsequently, pathway enrichment analysis revealed that DNA methylation programing was involved in the regulation of adipogenic and myogenic differentiation potential through mediating the crosstalk among pathways including focal adhesion, regulation of actin cytoskeleton, MAPK signaling pathway, and calcium signaling pathway. In particular, we characterized a new role of CACNA2D2 in inhibiting myogenic differentiation by suppressing JNK/MAPK signaling pathway. Conclusions This study depicted a comprehensive landmark of DNA methylome of skeletal muscle-derived myogenic and adipogenic precursors, highlighted the critical role of CACNA2D2 in regulating myogenic differentiation, and illustrated the possible regulatory ways of DNA methylation on cell fate commitment and skeletal muscle homeostasis.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Giovanna Rigillo ◽  
Valentina Basile ◽  
Silvia Belluti ◽  
Mirko Ronzio ◽  
Elisabetta Sauta ◽  
...  

AbstractThe transcription factor NF-Y promotes cell proliferation and its activity often declines during differentiation through the regulation of NF-YA, the DNA binding subunit of the complex. In stem cell compartments, the shorter NF-YA splice variant is abundantly expressed and sustains their expansion. Here, we report that satellite cells, the stem cell population of adult skeletal muscle necessary for its growth and regeneration, express uniquely the longer NF-YA isoform, majorly associated with cell differentiation. Through the generation of a conditional knock out mouse model that selectively deletes the NF-YA gene in satellite cells, we demonstrate that NF-YA expression is fundamental to preserve the pool of muscle stem cells and ensures robust regenerative response to muscle injury. In vivo and ex vivo, satellite cells that survive to NF-YA loss exit the quiescence and are rapidly committed to early differentiation, despite delayed in the progression towards later states. In vitro results demonstrate that NF-YA-depleted muscle stem cells accumulate DNA damage and cannot properly differentiate. These data highlight a new scenario in stem cell biology for NF-Y activity, which is required for efficient myogenic differentiation.


Sign in / Sign up

Export Citation Format

Share Document