scholarly journals Clinical Prognostic Model of Autophagy-Related LncRNA Genes in The Esophageal Adenocarcinoma (EAC) to Predicting Overall Survival (OS) of The Patients:The Evidence From Bioinformatic Analysis

Author(s):  
Liusheng Wu ◽  
Xiaoqiang Li ◽  
Jixian Liu ◽  
Da Wu ◽  
Dingwang Wu ◽  
...  

Abstract Objective: Autophagy-related LncRNA genes play a vital role in the development of esophageal adenocarcinoma.Our study try to construct a prognostic model of autophagy-related LncRNA esophageal adenocarcinoma, and use this model to calculate patients with esophageal adenocarcinoma. The survival risk value of esophageal adenocarcinoma can be used to evaluate its survival prognosis. At the same time, to explore the sites of potential targeted therapy genes to provide valuable guidance for the clinical diagnosis and treatment of esophageal adenocarcinoma.Methods: Our study have downloaded 261 samples of LncRNA-related transcription and clinical data of 87 patients with esophageal adenocarcinoma from the TCGA database, and 307 autophagy-related gene data from www.autuphagy.com. We applied R software (Version 4.0.2) for data analysis, merged the transcriptome LncRNA genes, autophagy-related genes and clinical data, and screened autophagy LncRNA genes related to the prognosis of esophageal adenocarcinoma. We also performed KEGG and GO enrichment analysis and GSEA enrichment analysis in these LncRNA genes to analysis the risk characteristics and bioinformatics functions of signal transduction pathways. Univariate and multivariate Cox regression analysis were used to determine the correlation between autophagy-related LncRNA and independent risk factors. The establishment of ROC curve facilitates the evaluation of the feasibility of predicting prognostic models, and further studies the correlation between autophagy-related LncRNA and the clinical characteristics of patients with esophageal adenocarcinoma. Finally, we also used survival analysis, risk analysis and independent prognostic analysis to verify the prognosis model of esophageal adenocarcinoma.Results: We screened and identified 22 autophagic LncRNA genes that are highly correlated with the overall survival (OS) of patients with esophageal adenocarcinoma. The area under the ROC curve(AUC=0.941)and the calibration curve have a good lineup, which has statistical analysis value. In addition, univariate and multivariate Cox regression analysis showed that the autophagy LncRNA feature of this esophageal adenocarcinoma is an independent predictor of esophageal adenocarcinoma.Conclusion: These LncRNA screened and identified may participate in the regulation of cellular autophagy pathways, and at the same time affect the tumor development and prognosis of patients with esophageal adenocarcinoma. These results indicate that risk signature and nomogram are important indicators related to the prognosis of patients with esophageal adenocarcinoma.

2020 ◽  
Author(s):  
Shuwen Han ◽  
Kefeng Ding

Abstract Background: Colorectal cancer (CRC) is one of the most common malignancies. The purpose of this study is to construct a prognostic model for predicting the overall survival (OS) in patients with CRC. Methods: The mRNA-seq and miRNA-seq data of colon adenocarcinoma (COAD) and rectal adenocarcinoma (READ) were downloaded from The Cancer Genome Atlas (TCGA) database. The differentially expressed RNAs (DE-RNAs) between tumor and normal tissues were screened. The Kaplan-Meier and univariate Cox regression analysis were used to screen the survival-related genes. Functional enrichment analysis of survival-related genes was conducted, followed by protein-protein interaction (PPI) analysis. Subsequently, the potential drugs targeting differentially expressed mRNAs (DE-mRNAs) were investigated. Multivariate Cox regression analysis was then conducted to screen the independent prognostic factors, and these genes were used to establish a prognostic model. A receiver operator characteristic (ROC) curve was constructed, and the area under the curve (AUC) value of ROC was calculated to evaluate the specificity and sensitivity of the model. Results: A total of 855 survival-related genes were screened. These genes were mainly enriched in Gene Ontology (GO) terms, such as methylation, synapse organization, and methyltransferase activity; and pathway analysis showed that these genes were significantly involved in N-Glycan biosynthesis and the calcium signaling pathway. PPI analysis showed that aminolevulinate dehydratase (ALAD) and cholinergic receptor muscarinic 2 (CHRM2) served vital roles in the development of CRC. Aminolevulinic acid, levulinic acid, and loxapine might be potential drugs for CRC treatment. The prognostic models were built and the patients were divided into high-risk and low-risk groups based on the median of risk score (RS) as screening threshold. The OS for patients in the high-risk group was markedly shorter than that for patients in the low-risk group. Meanwhile, kazal type serine peptidase inhibitor domain 1 (KAZALD1), hippocalcin like 4 (HPCAL4), cadherin 8 (CDH8), synaptopodin 2 (SYNPO2), cyclin D3 (CCND3), and hsa_mir_26b may be independent prognostic factors that could be considered as therapeutic targets for CRC.Conclusion: We established prognostic models that could predict the OS for CRC patients and may assist clinicians in providing personalized and precision treatment in this patient population.Highlights:1. ALAD served a vital role in the development of CRC.2. CHRM2 played a role in CRC development by affecting the calcium signaling pathway.3. Aminolevulinic acid, levulinic acid, and loxapine might be potential drugs for treating CRC.4. KAZALD1 and HPCAL4 were associated with the OS of CRC.5. CDH8, SYNPO2, CCND3, and hsa-mir-26b were closely related to the prognostic of CRC staging.


2021 ◽  
Vol 20 ◽  
pp. 153303382110414
Author(s):  
Xiaoyong Li ◽  
Jiaqong Lin ◽  
Yuguo pan ◽  
Peng Cui ◽  
Jintang Xia

Background: Liver progenitor cells (LPCs) play significant roles in the development and progression of hepatocellular carcinoma (HCC). However, no studies on the value of LPC-related genes for evaluating HCC prognosis exist. We developed a gene signature of LPC-related genes for prognostication in HCC. Methods: To identify LPC-related genes, we analyzed mRNA expression arrays from a dataset (GSE57812 & GSE 37071) containing LPCs, mature hepatocytes, and embryonic stem cell samples. HCC RNA-Seq data from The Cancer Genome Atlas (TCGA) were used to explore the differentially expressed genes (DEGs) related to prognosis through DEG analysis and univariate Cox regression analysis. Lasso and multivariate Cox regression analyses were performed to construct the LPC-related gene prognostic model in the TCGA training dataset. This model was validated in the TCGA testing set and an external dataset (International Cancer Genome Consortium [ICGC] dataset). Finally, we investigated the relationship between this prognostic model with tumor-node-metastasis stage, tumor grade, and vascular invasion of HCC. Results: Overall, 1770 genes were identified as LPC-related genes, of which 92 genes were identified as DEGs in HCC tissues compared with normal tissues. Furthermore, we randomly assigned patients from the TCGA dataset to the training and testing cohorts. Twenty-six DEGs correlated with overall survival (OS) in the univariate Cox regression analysis. Lasso and multivariate Cox regression analyses were performed in the TCGA training set, and a 3-gene signature was constructed to stratify patients into 2 risk groups: high-risk and low-risk. Patients in the high-risk group had significantly lower OS than those in the low-risk group. Receiver operating characteristic curve analysis confirmed the signature's predictive capacity. Moreover, the risk score was confirmed to be an independent predictor for patients with HCC. Conclusion: We demonstrated that the LPC-related gene signature can be used for prognostication in HCC. Thus, targeting LPCs may serve as a therapeutic alternative for HCC.


2021 ◽  
Vol 11 ◽  
Author(s):  
Zhipeng Zhu ◽  
Mengyu Song ◽  
Wenhao Li ◽  
Mengying Li ◽  
Sihan Chen ◽  
...  

Hepatocellular carcinoma is a common malignant tumor with poor prognosis, poor treatment effect, and lack of effective biomarkers. In this study, bioinformatics analysis of immune-related genes of hepatocellular carcinoma was used to construct a multi-gene combined marker that can predict the prognosis of patients. The RNA expression data of hepatocellular carcinoma were downloaded from The Cancer Genome Atlas (TCGA) database, and immune-related genes were obtained from the IMMPORT database. Differential analysis was performed by Wilcox test to obtain differentially expressed genes. Univariate Cox regression analysis, lasso regression analysis and multivariate Cox regression analysis were performed to establish a prognostic model of immune genes, a total of 5 genes (HDAC1, BIRC5, SPP1, STC2, NR6A1) were identified to construct the models. The expression levels of 5 genes in HCC tissues were significantly different from those in paracancerous tissues. The Kaplan-Meier survival curve showed that the risk score calculated according to the prognostic model was significantly related to the overall survival (OS) of HCC. The receiver operating characteristic (ROC) curve confirmed that the prognostic model had high accuracy. Independent prognostic analysis was performed to prove that the risk value can be used as an independent prognostic factor. Then, the gene expression data of hepatocellular carcinoma in the ICGC database was used as a validation data set for the verification of the above steps. In addition, we used the CIBERSORT software and TIMER database to conduct immune infiltration research, and the results showed that the five genes of the model and the risk score have a certain correlation with the content of immune cells. Moreover, through Gene Set Enrichment Analysis (GSEA) and the construction of protein interaction networks, we found that the p53-mediated signal transduction pathway is a potentially important signal pathway for hepatocellular carcinoma and is positively regulated by certain genes in the prognostic model. In conclusion, this study provides potential targets for predicting the prognosis and treatment of hepatocellular carcinoma patients, and also provides new ideas about the correlation between immune genes and potential pathways of hepatocellular carcinoma.


2021 ◽  
pp. 153537022110535
Author(s):  
Nan Li ◽  
Kai Yu ◽  
Zhong Lin ◽  
Dingyuan Zeng

Uterine corpus endometrial carcinoma (UCEC) is the third most frequent gynecological malignancies in the female reproductive system. Long non-coding RNAs (lncRNAs) are closely involved in tumor progression. This study aimed to develop an immune subtyping system and a prognostic model based on lncRNAs for UCEC. Paired lncRNAs and non-negative matrix factorization were applied to identify immune subtypes. Enrichment analysis was conducted to assess functional pathways, immune-related genes, and cells. Univariate and multivariate Cox regression analysis were performed to analyze the relation between lncRNAs and overall survival (OS). A prognostic model was constructed and optimized by least absolute shrinkage and selection operator (LASSO) and Akaike information criterion (AIC). Two immune subtypes (C1 and C2) and four paired-prognostic lncRNAs closely associated with overall survival were identified. Some immune features, sensitivity of chemotherapy and immunotherapy, and the relation with immune escape showed variations between two subtypes. A nomogram established based on prognostic model and clinical features was effective in OS prediction. The immune subtyping system based on lncRNAs and the four-paired-lncRNA signature was predictive of UCEC prognosis and can facilitate personalized therapies such as immunotherapy or RNA-based therapy for UCEC patients.


2020 ◽  
Author(s):  
YuPing Bai ◽  
Wenbo Qi ◽  
Le Liu ◽  
Jing Zhang ◽  
Lan Pang ◽  
...  

Abstract Background: Hepatocellular carcinoma is ranked fifth among the most common cancer worldwide. Hypoxia can induce tumor growth, but the relationship with HCC prognosis remains unclear. Our study aims to construct a hypoxia-related multigene model to predict the prognosis of HCC. Methods: RNA-seq expression data and related clinical information were download from TCGA database and ICGC database, respectively. Univariate/multivariate Cox regression analysis was used to construct prognostic models. KM curve analysis, and ROC curve were used to evaluate the prognostic models, which were further verified in the clinical traits and ICGC database. GSEA analyzed pathway enrichment in high-risk groups. Nomogram was constructed to predict the personalized treatment of patients. Finally, real-time fluorescence quantitative PCR(RT-qPCR) was used to detect the expressions of KDELR3 and SCARB1 in normal hepatocytes and 4 hepatocellular carcinoma cells. Results: Through a series of analyses, 7 prognostic markers related to HCC survival were constructed. HCC patients were divided into the high and low risk group, and the results of KM curve showed that there was a significant difference between the two groups. Stratified analysis,found that there were significant differences in risk values of different ages, genders, stages and grades, which could be used as independent predictors. In addition, we assessed the risk value in the clinical traits analysis and found that it could accelerate the progression of cancer, while the results of GSEA enrichment analysis showed that the high-risk group patients were mainly distributed in the cell cycle and other pathways. Then, Nomogram was constructed to predict the overall survival of patients. Finally, RT-qPCR showed that KDELR3 and SCARB1 were highly expressed in HepG2 and L02, respectively. Conclusion: This study provides a potential diagnostic indicator for HCC patients, and help clinicians to deepen the comprehension in HCC pathogenesis so as to make personalized medical decisions.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10628
Author(s):  
Juan Chen ◽  
Rui Zhou

Background Lung adenocarcinoma (LUAD) is the most common histological type of lung cancers, which is the primary cause of cancer‐related mortality worldwide. Growing evidence has suggested that tumor microenvironment (TME) plays a pivotal role in tumorigenesis and progression. Hence, we investigate the correlation of TME related genes with LUAD prognosis. Method The information of LUAD gene expression data was obtained from The Cancer Genome Atlas (TCGA). According to their immune/stromal scores calculated by the ESTIMATE algorithm, differentially expressed genes (DEGs) were identified. Then, we performed univariate Cox regression analysis on DEGs to obtain genes that are apparently bound up with LUAD survival (SurGenes). Functional annotation and protein-protein interaction (PPI) was also conducted on SurGenes. By validating the SurGenes with data sets of lung cancer from the Gene Expression Omnibus (GEO), 106 TME related SurGenes were generated. Further, intersection analysis was executed between the 106 TME related SurGenes and hub genes from PPI network, PTPRC and CD19 were obtained. Gene Set Enrichment Analysis and CIBERSORT analysis were performed on PTPRC and CD19. Based on the TCGA LUAD dataset, we conducted factor analysis and Step-wise multivariate Cox regression analysis for 106 TME related SurGenes to construct the prognostic model for LUAD survival prediction. The LUAD dataset in GEO (GSE68465) was used as the testing dataset to confirm the prognostic model. Multivariate Cox regression analysis was used between risk score from the prognostic model and clinical parameters. Result A total of 106 TME related genes were collected in our research totally, which were markedly correlated with the overall survival (OS) of LUAD patient. Bioinformatics analysis suggest them mainly concentrated on immune response, cell adhesion, and extracellular matrix. More importantly, among 106 TME related SurGenes, PTPRC and CD19 were highly interconnected nodes among PPI network and correlated with immune activity, exhibiting significant prognostic potential. The prognostic model was a weighted linear combination of the 106 genes, by which the low-OS LUAD samples could be separated from the high-OS samples with success. This model was also able to rebustly predict the situation of survival (training set: p-value < 0.0001, area under the curve (AUC) = 0.649; testing set: p-value = 0.0009, AUC = 0.617). By combining with clinical parameters, the prognostic model was optimized. The AUC achieved 0.716 for 3 year and 0.699 for 5 year. Conclusion A series of TME-related prognostic genes were acquired in this research, which could reflect immune disorders within TME, and PTPRC and CD19 show the potential to be an indicator for LUAD prognosis and tumor microenvironment modulation. The prognostic model constructed base on those prognostic genes presented a high predictive ability, and may have clinical implications in the overall survival prediction of LUAD.


2020 ◽  
Author(s):  
Yang Li ◽  
Rongrong Sun ◽  
Youwei Zhang ◽  
Yuan Yuan ◽  
Yufeng Miao

Abstract Background: Evidence suggests that altered DNA methylation plays a causative role in the occurrence, progression and prognosis of gastric cancer (GC). Thus, methylated-differentially expressed genes (MDEGs) could potentially serve as biomarkers and therapeutic targets in GC.Methods: Four genomics profiling datasets were used to identify MDEGs. Gene Ontology enrichment and Kyoto Encyclopaedia of Genes and Genomes pathway enrichment analysis were used to explore the biological roles of MDEGs in GC. Univariate Cox and LASSO analysis were used to identify survival-related MDEGs and to construct a MDEGs-based signature. The prognostic performance was evaluated in two independent cohorts.Results: We identified a total of 255 MDEGs, including 192 hypermethylation-low expression and 63 Hypomethylation-high expression genes. The univariate Cox regression analysis showed that 83 MDEGs were associated with overall survival. Further we constructed an eight-MDEGs signature that was independent predictive of prognosis in the training cohort. By applying the eight-MDEGs signature, patients in the training cohort could be categorized into high-risk or low-risk subgroup with significantly different overall survival (HR = 2.62, 95%CI= 1.71-4.02, P < 0.0001). The prognostic value of the eight-MDEGs signature was confirmed in another independent GEO cohort (HR=1.35, 95% CI= 1.03-1.78, P= 0.0302) and TCGA-GC cohort (HR=1.85, 95% CI= 1.16-2.94, P= 0.0084). Multivariate cox regression analysis proved the eight-MDEGs signature was an independent prognostic factor for GC.Conclusion: We have thus established an innovative eight-MDEGs signature that is predictive of overall survival and could be a potentially useful guide for personalized treatment of GC patients.


2021 ◽  
Vol 18 (6) ◽  
pp. 8045-8063
Author(s):  
Han Zhao ◽  
◽  
Yun Chen ◽  
Peijun Shen ◽  
Lan Gong ◽  
...  

<abstract> <sec><title>Background</title><p>Uveal melanoma (UM) is the most aggressive intraocular tumor worldwide. Accurate prognostic models are urgently needed. The present research aimed to construct and validate a prognostic signature is associated with overall survival (OS) for UM patients based on metabolism-related genes (MRGs).</p> </sec> <sec><title>Methods</title><p>MRGs were obtained from molecular signature database (MSigDB). The gene expression profiles and patient clinical data were downloaded from The Cancer Genome Atlas (TCGA) database. In the training datasets, MRGs were analyzed through univariate Cox regression analyses and least absolute shrinkage and selection operator (LASSO) Cox analyses to build a prognostic model. The GSE84976 was treated as the validation cohort. In addition, time-dependent receiver operating characteristic (ROC) and Kaplan-Meier survival curve analyses the reliability of the developed model. Then, gene set enrichment analysis (GSEA) was used for gene enrichment analysis. Nomogram that combined the five-gene signature was used to evaluate the predictive OS value of UM patients.</p> </sec> <sec><title>Results</title><p>Five MRGs were identified and used to establish the prognostic model for UM patients. The model was successfully validated using the testing cohort. Moreover, ROC analysis demonstrated a strong predictive ability that our prognostic signature had for UM prognosis. Multivariable Cox regression analysis revealed that the risk model was an independent predictor of prognosis. UM patients with a high-risk score showed a higher level of immune checkpoint molecules.</p> </sec> <sec><title>Conclusion</title><p>We established a novel metabolism-related signature that could predict survival and might be therapeutic targets for the treatment of UM patients.</p> </sec> </abstract>


2021 ◽  
Author(s):  
Yuanmei Chen ◽  
Xinyi Huang ◽  
Haiyan Peng ◽  
Guibin Weng ◽  
Zhengrong Huang ◽  
...  

Abstract Background. Esophageal cancer (EC) is the 7th most common neoplasm and the 6th most common cause of cancer-related death worldwide. Immunotherapy is an effective treatment for EC patients. However, there are no dependable markers for predicting prognosis and immunotherapy responses in EC. Our study aims to explore prognostic models and markers in EC as well as predictors for immunotherapy. Methods. The expression profiles of EC were obtained from The Cancer Genome Atlas (TCGA), the Gene Expression Omnibus (GEO), and International Cancer Genome Consortium (ICGC) databases. Cox regression analysis was performed to construct a prognostic model. Overall survival and receiver operating characteristic curve analyses were applied to verify the accuracy of the model. The CIBERSORT algorithm was conducted to quantify the infiltration of different immune cells, and EC was grouped into three immune cell infiltration (ICI) clusters. PD-1 and PD-L1 expressions were compared between the ICI clusters. Overall survival analysis between ICI score and tumor mutation burden was conducted. The immunotherapy response of patients in different ICI score clusters was also compared. The copy number variations, somatic mutations, and single nucleotide polymorphisms were analyzed. Enrichment analyses were also performed. Results. A prognostic model was successfully constructed. Three ICI clusters were identified, and the clusters with high immune and stromal scores tended to have more immune-activated phenotypes and higher expressions of PD-1 and PDL1. The ICI score may be used as a predictor independent of tumor mutation burden. Patients with higher ICI score tended to have better immunotherapeutic responses than those with lower scores. Enrichment analyses showed that the differentially expressed genes were mostly enriched in microvillus and the KRAS and IL6/JAK/STAT3 pathways. The top eight genes with the highest mutation frequencies in EC were identified and all related to the prognosis of EC patients. Conclusions. Our study established an effective prognostic model and identified markers for predicting the prognosis and immunotherapy response of EC patients.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Chao Chen ◽  
Yan Qun Liu ◽  
Shi Xiang Qiu ◽  
Ya Li ◽  
Ning Jun Yu ◽  
...  

Abstract Backgrounds Liver hepatocellular carcinoma (HCC) is one of the most malignant tumors, of which prognosis is unsatisfactory in most cases and metastatic of HCC often results in poor prognosis. In this study, we aimed to construct a metastasis- related mRNAs prognostic model to increase the accuracy of prediction of HCC prognosis. Methods Three hundred seventy-four HCC samples and 50 normal samples were downloaded from The Cancer Genome Atlas (TCGA) database, involving transcriptomic and clinical data. Metastatic-related genes were acquired from HCMBD website at the same time. Two hundred thirty-three samples were randomly divided into train dataset and test dataset with a proportion of 1:1 by using caret package in R. Kaplan-Meier method and univariate Cox regression analysis and lasso regression analysis were performed to obtain metastasis-related mRNAs which played significant roles in prognosis. Then, using multivariate Cox regression analysis, a prognostic prediction model was established. Transcriptome and clinical data were combined to construct a prognostic model and a nomogram for OS evaluation. Functional enrichment in high- and low-risk groups were also analyzed by GSEA. An entire set based on The International Cancer Genome Consortium(ICGC) database was also applied to verify the model. The expression levels of SLC2A1, CDCA8, ATG10 and HOXD9 are higher in tumor samples and lower in normal tissue samples. The expression of TPM1 in clinical sample tissues is just the opposite. Results One thousand eight hundred ninety-five metastasis-related mRNAs were screened and 6 mRNAs were associated with prognosis. The overall survival (OS)-related prognostic model based on 5 MRGs (TPM1,SLC2A1, CDCA8, ATG10 and HOXD9) was significantly stratified HCC patients into high- and low-risk groups. The AUC values of the 5-gene prognostic signature at 1 year, 2 years, and 3 years were 0.786,0.786 and 0.777. A risk score based on the signature was a significantly independent prognostic factor (HR = 1.434; 95%CI = 1.275–1.612; P < 0.001) for HCC patients. A nomogram which incorporated the 5-gene signature and clinical features was also built for prognostic prediction. GSEA results that low- and high-risk group had an obviously difference in part of pathways. The value of this model was validated in test dataset and ICGC database. Conclusion Metastasis-related mRNAs prognostic model was verified that it had a predictable value on the prognosis of HCC, which could be helpful for gene targeted therapy.


Sign in / Sign up

Export Citation Format

Share Document