scholarly journals Tumor microenvironment related novel signature predict lung adenocarcinoma survival

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10628
Author(s):  
Juan Chen ◽  
Rui Zhou

Background Lung adenocarcinoma (LUAD) is the most common histological type of lung cancers, which is the primary cause of cancer‐related mortality worldwide. Growing evidence has suggested that tumor microenvironment (TME) plays a pivotal role in tumorigenesis and progression. Hence, we investigate the correlation of TME related genes with LUAD prognosis. Method The information of LUAD gene expression data was obtained from The Cancer Genome Atlas (TCGA). According to their immune/stromal scores calculated by the ESTIMATE algorithm, differentially expressed genes (DEGs) were identified. Then, we performed univariate Cox regression analysis on DEGs to obtain genes that are apparently bound up with LUAD survival (SurGenes). Functional annotation and protein-protein interaction (PPI) was also conducted on SurGenes. By validating the SurGenes with data sets of lung cancer from the Gene Expression Omnibus (GEO), 106 TME related SurGenes were generated. Further, intersection analysis was executed between the 106 TME related SurGenes and hub genes from PPI network, PTPRC and CD19 were obtained. Gene Set Enrichment Analysis and CIBERSORT analysis were performed on PTPRC and CD19. Based on the TCGA LUAD dataset, we conducted factor analysis and Step-wise multivariate Cox regression analysis for 106 TME related SurGenes to construct the prognostic model for LUAD survival prediction. The LUAD dataset in GEO (GSE68465) was used as the testing dataset to confirm the prognostic model. Multivariate Cox regression analysis was used between risk score from the prognostic model and clinical parameters. Result A total of 106 TME related genes were collected in our research totally, which were markedly correlated with the overall survival (OS) of LUAD patient. Bioinformatics analysis suggest them mainly concentrated on immune response, cell adhesion, and extracellular matrix. More importantly, among 106 TME related SurGenes, PTPRC and CD19 were highly interconnected nodes among PPI network and correlated with immune activity, exhibiting significant prognostic potential. The prognostic model was a weighted linear combination of the 106 genes, by which the low-OS LUAD samples could be separated from the high-OS samples with success. This model was also able to rebustly predict the situation of survival (training set: p-value < 0.0001, area under the curve (AUC) = 0.649; testing set: p-value = 0.0009, AUC = 0.617). By combining with clinical parameters, the prognostic model was optimized. The AUC achieved 0.716 for 3 year and 0.699 for 5 year. Conclusion A series of TME-related prognostic genes were acquired in this research, which could reflect immune disorders within TME, and PTPRC and CD19 show the potential to be an indicator for LUAD prognosis and tumor microenvironment modulation. The prognostic model constructed base on those prognostic genes presented a high predictive ability, and may have clinical implications in the overall survival prediction of LUAD.

BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Liang Luo ◽  
Haiyi Zhou ◽  
Hao Su

Abstract Background The tumor microenvironment acts a pivotal part in the occurrence and development of tumor. However, there are few studies on the microenvironment of papillary renal cell carcinoma (PRCC). Our study aims to explore prognostic genes related to tumor microenvironment in PRCC. Methods PRCC expression profiles and clinical data were extracted from The Cancer Gene Atlas (TCGA) and Gene Expression Omnibus (GEO) database. Immune/stromal scores were performed utilizing the ESTIMATE algorithm. Three hundred fifty-seven samples were split into two groups on the basis of median immune/stromal score, and comparison of gene expression was conducted. Intersect genes were obtained by Venn diagrams. Hub genes were selected through protein-protein interaction (PPI) network construction, and relevant functional analysis was conducted by DAVID. We used Kaplan–Meier analysis to identify the correlations between genes and overall survival (OS) and progression-free survival (PFS). Univariate and multivariate cox regression analysis were employed to construct survival model. Cibersort was used to predict the immune cell composition of high and low risk group. Combined nomograms were built to predict PRCC prognosis. Immune properties of PRCC were validated by The Cancer Immunome Atlas (TCIA). Results We found immune/stromal score was correlated with T pathological stages and PRCC subtypes. Nine hundred eighty-nine differentially expressed genes (DEGs) and 1169 DEGs were identified respectively on the basis of immune and stromal score. Venn diagrams indicated that 763 co-upregulated genes and 4 co-downregulated genes were identified. Kaplan-Meier analysis revealed that 120 genes were involved in tumor prognosis. Then PPI network analysis identified 22 hub genes, and four of which were significantly related to OS in patients with PRCC confirmed by cox regression analysis. Finally, we constructed a prognostic nomogram which combined with influence factors. Conclusions Four tumor microenvironment-related genes (CD79A, CXCL13, IL6 and CCL19) were identified as biomarkers for PRCC prognosis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shaojie Chen ◽  
Feifei Huang ◽  
Shangxiang Chen ◽  
Yinting Chen ◽  
Jiajia Li ◽  
...  

ObjectiveGrowing evidence has highlighted that the immune and stromal cells that infiltrate in pancreatic cancer microenvironment significantly influence tumor progression. However, reliable microenvironment-related prognostic gene signatures are yet to be established. The present study aimed to elucidate tumor microenvironment-related prognostic genes in pancreatic cancer.MethodsWe applied the ESTIMATE algorithm to categorize patients with pancreatic cancer from TCGA dataset into high and low immune/stromal score groups and determined their differentially expressed genes. Then, univariate and LASSO Cox regression was performed to identify overall survival-related differentially expressed genes (DEGs). And multivariate Cox regression analysis was used to screen independent prognostic genes and construct a risk score model. Finally, the performance of the risk score model was evaluated by Kaplan-Meier curve, time-dependent receiver operating characteristic and Harrell’s concordance index.ResultsThe overall survival analysis demonstrated that high immune/stromal score groups were closely associated with poor prognosis. The multivariate Cox regression analysis indicated that the signatures of four genes, including TRPC7, CXCL10, CUX2, and COL2A1, were independent prognostic factors. Subsequently, the risk prediction model constructed by those genes was superior to AJCC staging as evaluated by time-dependent receiver operating characteristic and Harrell’s concordance index, and both KRAS and TP53 mutations were closely associated with high risk scores. In addition, CXCL10 was predominantly expressed by tumor associated macrophages and its receptor CXCR3 was highly expressed in T cells at the single-cell level.ConclusionsThis study comprehensively investigated the tumor microenvironment and verified immune/stromal-related biomarkers for pancreatic cancer.


2021 ◽  
Vol 20 ◽  
pp. 153303382110414
Author(s):  
Xiaoyong Li ◽  
Jiaqong Lin ◽  
Yuguo pan ◽  
Peng Cui ◽  
Jintang Xia

Background: Liver progenitor cells (LPCs) play significant roles in the development and progression of hepatocellular carcinoma (HCC). However, no studies on the value of LPC-related genes for evaluating HCC prognosis exist. We developed a gene signature of LPC-related genes for prognostication in HCC. Methods: To identify LPC-related genes, we analyzed mRNA expression arrays from a dataset (GSE57812 & GSE 37071) containing LPCs, mature hepatocytes, and embryonic stem cell samples. HCC RNA-Seq data from The Cancer Genome Atlas (TCGA) were used to explore the differentially expressed genes (DEGs) related to prognosis through DEG analysis and univariate Cox regression analysis. Lasso and multivariate Cox regression analyses were performed to construct the LPC-related gene prognostic model in the TCGA training dataset. This model was validated in the TCGA testing set and an external dataset (International Cancer Genome Consortium [ICGC] dataset). Finally, we investigated the relationship between this prognostic model with tumor-node-metastasis stage, tumor grade, and vascular invasion of HCC. Results: Overall, 1770 genes were identified as LPC-related genes, of which 92 genes were identified as DEGs in HCC tissues compared with normal tissues. Furthermore, we randomly assigned patients from the TCGA dataset to the training and testing cohorts. Twenty-six DEGs correlated with overall survival (OS) in the univariate Cox regression analysis. Lasso and multivariate Cox regression analyses were performed in the TCGA training set, and a 3-gene signature was constructed to stratify patients into 2 risk groups: high-risk and low-risk. Patients in the high-risk group had significantly lower OS than those in the low-risk group. Receiver operating characteristic curve analysis confirmed the signature's predictive capacity. Moreover, the risk score was confirmed to be an independent predictor for patients with HCC. Conclusion: We demonstrated that the LPC-related gene signature can be used for prognostication in HCC. Thus, targeting LPCs may serve as a therapeutic alternative for HCC.


2021 ◽  
Author(s):  
Jixiang Cao ◽  
Xi Chen ◽  
Guang Lu ◽  
Haowei Wang ◽  
Xinyu Zhang ◽  
...  

Abstract Background: Cholangiocarcinoma (CCA) is the most common malignancy of the biliary tract with a dismal prognosis. Increasing evidence suggests that tumor microenvironment (TME) is closely associated with cancer prognosis. However, the prognostic signature for CCA based on TME has not yet been reported. This study aimed to develop a TME-related prognostic signature for accurately predicting the prognosis of patients with CCA. Methods: Based on the TCGA database, we calculated the stromal and immune scores using the ESTIMATE algorithm to assess TME in stromal and immune cells derived from CCA. TME-related differentially expressed genes were identified, followed by functional enrichment analysis and PPI network analysis. Univariate Cox regression analysis, Lasso Cox regression model and multivariable Cox regression analysis were performed to identify and construct the TME-related prognostic gene signature. Gene Set Enrichment Analyses (GSEA) was performed to further investigate the potential molecular mechanisms. The correlations between the risk scores and tumor infiltration immune cells were analyzed using Tumor Immune Estimation Resource (TIMER) database. Results: A total of 784 TME-related differentially expressed genes (DEGs) were identified, which were mainly enriched in immune-related processes and pathways. Among these TME-related DEGs, A novel two‑gene signature (including GAD1 and KLRB1) was constructed for CCA prognosis prediction. The AUC of the prognostic model for predicting the survival of patients at 1-, 2-, and 3- years was 0.811, 0.772, and 0.844, respectively. Cox regression analysis showed that the two‑gene signature was an independent prognostic factor. Based on the risk scores of the prognostic model, CCA patients were divided into high- and low-risk groups, and patients with high-risk score had shorter survival time than those with low-risk score. Furthermore, we found that the risk scores were negatively correlated with TME-scores and the number of several tumor infiltration immune cells, including B cells and CD4+ T cells. Conclusion: Our study established a novel TME-related gene signature to predict the prognosis of patients with CCA. This might provide a new understanding of the potential relationship between TME and CCA prognosis, and serve as a prognosis stratification tool for guiding personalized treatment of CCA patients.


2021 ◽  
Author(s):  
Liusheng Wu ◽  
Xiaoqiang Li ◽  
Jixian Liu ◽  
Da Wu ◽  
Dingwang Wu ◽  
...  

Abstract Objective: Autophagy-related LncRNA genes play a vital role in the development of esophageal adenocarcinoma.Our study try to construct a prognostic model of autophagy-related LncRNA esophageal adenocarcinoma, and use this model to calculate patients with esophageal adenocarcinoma. The survival risk value of esophageal adenocarcinoma can be used to evaluate its survival prognosis. At the same time, to explore the sites of potential targeted therapy genes to provide valuable guidance for the clinical diagnosis and treatment of esophageal adenocarcinoma.Methods: Our study have downloaded 261 samples of LncRNA-related transcription and clinical data of 87 patients with esophageal adenocarcinoma from the TCGA database, and 307 autophagy-related gene data from www.autuphagy.com. We applied R software (Version 4.0.2) for data analysis, merged the transcriptome LncRNA genes, autophagy-related genes and clinical data, and screened autophagy LncRNA genes related to the prognosis of esophageal adenocarcinoma. We also performed KEGG and GO enrichment analysis and GSEA enrichment analysis in these LncRNA genes to analysis the risk characteristics and bioinformatics functions of signal transduction pathways. Univariate and multivariate Cox regression analysis were used to determine the correlation between autophagy-related LncRNA and independent risk factors. The establishment of ROC curve facilitates the evaluation of the feasibility of predicting prognostic models, and further studies the correlation between autophagy-related LncRNA and the clinical characteristics of patients with esophageal adenocarcinoma. Finally, we also used survival analysis, risk analysis and independent prognostic analysis to verify the prognosis model of esophageal adenocarcinoma.Results: We screened and identified 22 autophagic LncRNA genes that are highly correlated with the overall survival (OS) of patients with esophageal adenocarcinoma. The area under the ROC curve(AUC=0.941)and the calibration curve have a good lineup, which has statistical analysis value. In addition, univariate and multivariate Cox regression analysis showed that the autophagy LncRNA feature of this esophageal adenocarcinoma is an independent predictor of esophageal adenocarcinoma.Conclusion: These LncRNA screened and identified may participate in the regulation of cellular autophagy pathways, and at the same time affect the tumor development and prognosis of patients with esophageal adenocarcinoma. These results indicate that risk signature and nomogram are important indicators related to the prognosis of patients with esophageal adenocarcinoma.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Zhongjun Tang ◽  
Kebo Cai

Background. Uveal melanoma (UM) has favorable local tumor control, but once metastasis develops, the prognosis is rather poor. Thus, it is urgent to develop metastasis predicting markers. Objective. Our study investigated a novel gene expression-based signature in predicting metastasis for patients with UM. Methods. In the discovery phase, 63 patients with UM from GEO data set GSE22138 were analyzed using the Weighted Correlation Network Analysis (WGCNA) to identify metastasis-related hub genes. The Least Absolute Shrinkage and Selection Operator (Lasso) Cox regression was used to select candidate genes and build a gene expression signature. In the validation phase, the signature was validated in The Cancer Genome Atlas database. Results. Forty-one genes were identified as hub genes of metastasis by WGCNA. After the Lasso Cox regression analysis, eight genes including RPL10A, EIF1B, TIPARP, RPL15, SLC25A38, PHLDA1, TFDP2, and MEGF10 were highlighted as candidate predictors. The gene expression signature for UM (UMPS) could independently predict MFS by univariate and multivariate Cox regression analysis. Incorporating UMPS increased the AUC of the traditional clinical model. In the validation cohort, UMPS performed well in predicting the MFS of UM patients. Conclusions. UMPS, an eight-gene-based signature, is useful in predicting prognosis for patients with UM.


2021 ◽  
Vol 8 ◽  
Author(s):  
Tong Wang ◽  
Weiwei Wen ◽  
Hongfei Liu ◽  
Jun Zhang ◽  
Xiaofeng Zhang ◽  
...  

Background: Stomach adenocarcinoma (STAD) is a significant global health problem. It is urgent to identify reliable predictors and establish a potential prognostic model.Methods: RNA-sequencing expression data of patients with STAD were downloaded from the Gene Expression Omnibus (GEO) and the Cancer Genome Atlas (TCGA) database. Gene expression profiling and survival analysis were performed to investigate differentially expressed genes (DEGs) with significant clinical prognosis value. Overall survival (OS) analysis and univariable and multivariable Cox regression analyses were performed to establish the prognostic model. Protein–protein interaction (PPI) network, functional enrichment analysis, and differential expression investigation were also performed to further explore the potential mechanism of the prognostic genes in STAD. Finally, nomogram establishment was undertaken by performing multivariate Cox regression analysis, and calibration plots were generated to validate the nomogram.Results: A total of 229 overlapping DEGs were identified. Following Kaplan–Meier survival analysis and univariate and multivariate Cox regression analysis, 11 genes significantly associated with prognosis were screened and five of these genes, including COL10A1, MFAP2, CTHRC1, P4HA3, and FAP, were used to establish the risk model. The results showed that patients with high-risk scores have a poor prognosis, compared with those with low-risk scores (p = 0.0025 for the training dataset and p = 0.045 for the validation dataset). Subsequently, a nomogram (including TNM stage, age, gender, histologic grade, and risk score) was created. In addition, differential expression and immunohistochemistry stain of the five core genes in STAD and normal tissues were verified.Conclusion: We develop a prognostic-related model based on five core genes, which may serve as an independent risk factor for survival prediction in patients with STAD.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Fanbo Qin ◽  
Junyong Zhang ◽  
Jianping Gong ◽  
Wenfeng Zhang

Background. Accumulating studies have demonstrated that autophagy plays an important role in hepatocellular carcinoma (HCC). We aimed to construct a prognostic model based on autophagy-related genes (ARGs) to predict the survival of HCC patients. Methods. Differentially expressed ARGs were identified based on the expression data from The Cancer Genome Atlas and ARGs of the Human Autophagy Database. Univariate Cox regression analysis was used to identify the prognosis-related ARGs. Multivariate Cox regression analysis was performed to construct the prognostic model. Receiver operating characteristic (ROC), Kaplan-Meier curve, and multivariate Cox regression analyses were performed to test the prognostic value of the model. The prognostic value of the model was further confirmed by an independent data cohort obtained from the International Cancer Genome Consortium (ICGC) database. Results. A total of 34 prognosis-related ARGs were selected from 62 differentially expressed ARGs identified in HCC compared with noncancer tissues. After analysis, a novel prognostic model based on ARGs (PRKCD, BIRC5, and ATIC) was constructed. The risk score divided patients into high- or low-risk groups, which had significantly different survival rates. Multivariate Cox analysis indicated that the risk score was an independent risk factor for survival of HCC after adjusting for other conventional clinical parameters. ROC analysis showed that the predictive value of this model was better than that of other conventional clinical parameters. Moreover, the prognostic value of the model was further confirmed in an independent cohort from ICGC patients. Conclusion. The prognosis-related ARGs could provide new perspectives on HCC, and the model should be helpful for predicting the prognosis of HCC patients.


2020 ◽  
Author(s):  
Shuwen Han ◽  
Kefeng Ding

Abstract Background: Colorectal cancer (CRC) is one of the most common malignancies. The purpose of this study is to construct a prognostic model for predicting the overall survival (OS) in patients with CRC. Methods: The mRNA-seq and miRNA-seq data of colon adenocarcinoma (COAD) and rectal adenocarcinoma (READ) were downloaded from The Cancer Genome Atlas (TCGA) database. The differentially expressed RNAs (DE-RNAs) between tumor and normal tissues were screened. The Kaplan-Meier and univariate Cox regression analysis were used to screen the survival-related genes. Functional enrichment analysis of survival-related genes was conducted, followed by protein-protein interaction (PPI) analysis. Subsequently, the potential drugs targeting differentially expressed mRNAs (DE-mRNAs) were investigated. Multivariate Cox regression analysis was then conducted to screen the independent prognostic factors, and these genes were used to establish a prognostic model. A receiver operator characteristic (ROC) curve was constructed, and the area under the curve (AUC) value of ROC was calculated to evaluate the specificity and sensitivity of the model. Results: A total of 855 survival-related genes were screened. These genes were mainly enriched in Gene Ontology (GO) terms, such as methylation, synapse organization, and methyltransferase activity; and pathway analysis showed that these genes were significantly involved in N-Glycan biosynthesis and the calcium signaling pathway. PPI analysis showed that aminolevulinate dehydratase (ALAD) and cholinergic receptor muscarinic 2 (CHRM2) served vital roles in the development of CRC. Aminolevulinic acid, levulinic acid, and loxapine might be potential drugs for CRC treatment. The prognostic models were built and the patients were divided into high-risk and low-risk groups based on the median of risk score (RS) as screening threshold. The OS for patients in the high-risk group was markedly shorter than that for patients in the low-risk group. Meanwhile, kazal type serine peptidase inhibitor domain 1 (KAZALD1), hippocalcin like 4 (HPCAL4), cadherin 8 (CDH8), synaptopodin 2 (SYNPO2), cyclin D3 (CCND3), and hsa_mir_26b may be independent prognostic factors that could be considered as therapeutic targets for CRC.Conclusion: We established prognostic models that could predict the OS for CRC patients and may assist clinicians in providing personalized and precision treatment in this patient population.Highlights:1. ALAD served a vital role in the development of CRC.2. CHRM2 played a role in CRC development by affecting the calcium signaling pathway.3. Aminolevulinic acid, levulinic acid, and loxapine might be potential drugs for treating CRC.4. KAZALD1 and HPCAL4 were associated with the OS of CRC.5. CDH8, SYNPO2, CCND3, and hsa-mir-26b were closely related to the prognostic of CRC staging.


2018 ◽  
Vol 38 (6) ◽  
Author(s):  
Xiaojing Ren ◽  
Yuanyuan Ji ◽  
Xuhua Jiang ◽  
Xun Qi

Sialic-acid-binding immunoglobulin-like lectin (siglec) regulates cell death, anti-proliferative effects and mediates a variety of cellular activities. Little was known about the relationship between siglecs and hepatocellular carcinoma (HCC) prognosis. Siglec gene expression between tumor and non-tumor tissues were compared and correlated with overall survival (OS) from HCC patients in GSE14520 microarray expression profile. Siglec-1 to siglec-9 were all down-regulated in tumor tissues compared with those in non-tumor tissues in HCC patients (all P < 0.05). Univariate and multivariate Cox regression analysis revealed that siglec-2 overexpression could predict better OS (HR = 0.883, 95%CI = 0.806–0.966, P = 0.007). Patients with higher siglec-2 levels achieved longer OS months than those with lower siglec-2 levels in the Kaplan–Meier event analysis both in training and validation sets (P < 0.05). Alpha-fetoprotein (AFP) levels in siglec-2 low expression group were significantly higher than those in siglec-2 high expression group using Chi-square analysis (P = 0.043). In addition, both logistic regression analysis and ROC curve method showed that siglec-2 down-regulation in tumor tissues was significantly associated with AFP elevation over 300 ng/ml (P < 0.05). In conclusion, up-regulation of siglec-2 in tumor tissues could predict better OS in HCC patients. Mechanisms of siglec-2 in HCC development need further research.


Sign in / Sign up

Export Citation Format

Share Document